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Augmenting authenticity 
for non‑invasive in vivo detection 
of random blood glucose 
with photoacoustic spectroscopy 
using Kernel‑based ridge regression
P. N. S. B. S. V. Prasad V 1, Ali Hussain Syed 1, Mudigonda Himansh 2, Biswabandhu Jana 3, 
Pranab Mandal 4 & Pradyut Kumar Sanki 1*

Photoacoustic Spectroscopy (PAS) is a potential method for the noninvasive detection of blood 
glucose. However random blood glucose testing can help to diagnose diabetes at an early stage and is 
crucial for managing and preventing complications with diabetes. In order to improve the diagnosis, 
control, and treatment of Diabetes Mellitus, an appropriate approach of noninvasive random blood 
glucose is required for glucose monitoring. A polynomial kernel-based ridge regression is proposed in 
this paper to detect random blood glucose accurately using PAS. Additionally, we explored the impact 
of the biological parameter BMI on the regulation of blood glucose, as it serves as the primary source 
of energy for the body’s cells. The kernel function plays a pivotal role in kernel ridge regression as it 
enables the algorithm to capture intricate non-linear associations between input and output variables. 
Using a Pulsed Laser source with a wavelength of 905 nm, a noninvasive portable device has been 
developed to collect the Photoacoustic (PA) signal from a finger. A collection of 105 individual random 
blood glucose samples was obtained and their accuracy was assessed using three metrics: Root 
Mean Square Error (RMSE), Mean Absolute Difference (MAD), and Mean Absolute Relative Difference 
(MARD). The respective values for these metrics were found to be 10.94 (mg/dl), 10.15 (mg/dl), and 
8.86%. The performance of the readings was evaluated through Clarke Error Grid Analysis and Bland 
Altman Plot, demonstrating that the obtained readings outperformed the previously reported state-
of-the-art approaches. To conclude the proposed IoT-based PAS random blood glucose monitoring 
system using kernel-based ridge regression is reported for the first time with more accuracy.

Diabetes Mellitus (DM) is a chronic condition characterized by either enough production of insulin or stop com-
pletely the production of insulin secretion by the pancreas. Prolonged high-value of blood sugar levels can have 
long-term effects including disorders like Neurological abnormalities, Heart attacks, and Renal failure. The World 
Health Organisation (WHO)1 and the International Diabetic Federation Association (IDFA)2 estimates that there 
are currently 450 million diabetics worldwide, and it will be around 700 million by the year 2045. Despite the fact 
that there is no cure for diabetes, it may be regulated by frequent monitoring of blood glucose. The progression 
and development of diabetes and associated disorders can be prevented by tight control of blood glucose levels. 
The currently available methods, however, rely on enzyme reactions and necessitate intrusive blood collection 
by painfully lancing the fingertip. The negative impact of this procedure on diabetic patients is twofold - it not 
only dissuades them from checking their glucose levels as frequently as recommended by medical professionals 
but also exposes them to the heightened risk of infection, potentially leading to severe consequences for their 
overall well-being. Recently Medtronic, Dexcom, and Abbott have introduced devices that enable continuous 
monitoring of blood glucose fluctuations in the interstitial fluid. However, these devices are also invasive, and the 
cost of the device is relatively high due to the regular replacement of the sensor in a periodic intervals. Numerous 
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attempts have been made to develop noninvasive glucose detection methods that are equivalent to the currently 
available invasive methods in order to address these problems. The methods are divided into two categories: 
(i). Non-optical and (ii) Optical methods. The Non-optical methods are Iontophoresis3, Electrical Impedance4, 
Microwave based measurements5 and the Optical methods include Raman Spectroscopy6–8, Optical Coherence 
Tomography (OCT)9,10, Diffuse Reflection Spectrocopy (DRS)11, Mid Infra Red Spectrsocpy (MIR)12, Near Infra 
Red Spectroscopy (NIR)13 and Photoacoustic Spectrsocopy (PAS)14. Optical tissue window15 is considered for the 
optical methods where interference16,17 factors due to tissue layers and blood analytes are less effective. Among 
all the spectroscopy techniques, PAS18–23 has shown more potential for the noninvasive in vivo detection of 
glucose. This method, which relies on the Photoacoustic (PA) effect, causes acoustic waves to be generated in a 
sample after it has been excited by a monochromatic light source, such as a pulsed laser24. The sample absorbs 
optical energy and converts it into heat, resulting in a localized temperature rise and expansion followed by a 
contraction due to the off state of the laser. The periodic excitation of the laser leads to the generation of a pres-
sure wave that travels from the irradiated region to the sample surface. PAS19,20,23 closely resembles conventional 
optical spectra and offers a noninvasive method to estimate blood glucose concentration by identifying specific 
excitation wavelengths that generate PA waves in tissue. PAS achieves high sensitivity and can detect even subtle 
variations in sample properties. PAS is capable of measuring absorption coefficients as low as 10−7 cm−1 , which 
makes a precise and effective technique for monitoring changes in glucose concentration. A pulsed laser light of 
wavelength 905 nm which absorbs more glucose molecules near the tissue has been used for the PA measurement 
in the NIR spectrum by which a promising result is generated. Dual-wavelength pulsed lasers have been used 
in implementing the PAS for the detection of blood glucose as reported by Pai et al.19,21 and they consider the 
change in the amplitude of the PA signal to represent the glucose value with a Gaussian kernel-based regression 
and the results are reported for in vitro testing by using the dual-wavelength lasers. Sim et al.20 utilized PAS and 
incorporated the Partial Least Square Regression Algorithm (PLSR) to detect glucose. They considered spatial 
information by scanning the finger and specifically targeting both secreting and non-secreting pores of the skin. 
The results might be impacted since the skin’s spatial information varies and the interpretation of periodic testing 
takes more time. Srichan et al.25 considered the multiple photonic near-infrared band sensor augmented with 
Personalized Medical Features (PMF) like SPO2 , Blood Pressure, Height, Weight, Age, Sex, and sensor values 
have been considered as the inputs to the shallow dense neural network implementation for blood glucose 
estimation. Although all the mentioned PMF might not create an impact on the detection of glucose molecules. 
So far the aforementioned PAS methods implemented dual-wavelength lasers or scanned finger images which 
are costly and take more time to produce the test results. Multivariate calibration algorithms provide robustness 
against abrupt fluctuations in a few feature values26. However, a careful balance must be maintained between 
model complexity and estimation error, as complex models risk overfitting to training data while simple models 
may lack generalizability. Additionally, the calibration model should be adaptable to incorporate additional 
inputs and signal features as necessary. The polynomial kernel-based ridge regression model27–29 is suitable for 
multivariate calibration and abruptly it will identify the changes in the parametric ratios. However, we identified 
only amplitude values from PA measurements are not sufficient for the noninvasive in vivo detection of random 
blood glucose. Here we incorporated the amplitude values from PA measurement and physically measured 
Body Mass Index (BMI) values of a person in the calibration algorithm. It is traced out that the BMI30–33 posses 
a strong influencing factor for the detection of random blood glucose compared with other medical features of 
a person. BMI is a measure of a person’s body fat based on their height and weight and it is an important factor 
essentially related to the use and regulation of glucose which is the main source of energy for the body’s cells. 
PAS is a potential method for the noninvasive detection of blood glucose. However, random blood glucose test-
ing can help to diagnose diabetes at an early stage and is crucial for managing and preventing complications 
with diabetes. To improve the diagnosis, control, and treatment of DM, a portable cost-effective improvised 
IoT-based PAS setup has been proposed first time for self-monitoring of blood glucose in this work using the 
ThingSpeak Cloud platform. In addition, a polynomial kernel-based ridge regression is proposed in this paper 
to detect random blood glucose more accurately using PAS. The kernel function plays a pivotal role in kernel 
ridge regression as it enables the algorithm to capture intricate non-linear associations between input and output 
variables for better accuracy.

Background
Working principle of PAS
According to the Beers-Lambert law34, the intensity of incident optical energy, Ea falls down exponentially as it 
penetrates through the sample with a depth of z. The glucose present in the sample with absorption coefficient 
α yields the optical absorption. The temperature of the medium rises as a result of the absorbed energy, creating 
volumetric expansion and it will be contracted during the absence of Ea . A periodic exposure of optical energy 
causes continuous stress and strain in the medium which creates a pressure wave po(z)35 and is given as

where β is the thermal expansion coefficient of the sample and B is the isothermal bulk modulus, ρ is the density 
and Cp is the specific heat. By utilizing the initial pressure distribution, po(t) , and the temporal profile of the opti-
cal excitation pulse g(t), the PA pressure36,37 generated in a sample can be determined and is given as.

(1)po(z) =
αβB

ρCp
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where,
α = Optical absorption coefficient.
β = Thermal expansion coefficient.
υ = Acoustic velocity in the sample.
R = Radius of the PA source generated. The change in the glucose concentration gch influences the physical 

properties of the sample and it is proportional to α , β, υ , & C−1
P  . The combined change in sample properties leads 

to an enhanced PA response, which correlates with the increase in sample glucose concentration. The amplitude 
of the PA signal is varied according to the change in the glucose levels.

Methodology
Proposed method for glucose detection
The block diagram of the proposed method is depicted in Fig. 1 showing a laser light with a peak power of 100W 
projected onto the finger with a wavelength 905 nm, Pulse Repeating Frequency (PRF) of 100 Hz, and a pulse 
width of 100ns. The laser light causes localized volumetric expansion, leading to the generation of a pressure 
wave. This pressure wave is detected by a piezoelectric transducer, which converts it into an output voltage. The 
resulting voltage is utilized for the in vivo detection of blood glucose. The PA signal underwent preprocessing 
before being displayed on the Yokogawa DLM2034 Mixed Signal Oscilloscope (MSO). The MSO captured the 
averaged signal frame of the PA signal along with other essential metrics. The extracted features from the PA 
signal were fed as the inputs to the kernel-based ridge regression algorithm for the detection of blood glucose. 
The Raspberry Pi4 model b38 board was used in order for implementing machine learning algorithms. To further 
enable real-time blood glucose monitoring, we utilized the ThingSpeak Cloud platform39,40 and Message Queuing 
Telemetry Transport (MQTT) protocol41 to secure the data transmission using Transport Layer Security (TLS).

Experimental analysis
Hardware setup for in vivo testing of glucose detection
A total of 105 random blood sample readings were collected from our device. Before taking the reading, each 
volunteer underwent physical measurements of their weight and height to calculate their BMI, and also measured 
other biological parameters like SpO2, Blood pressure, and Age. The study was conducted with the approval of the 
ethical committee of SRM University-AP, India, and all subjects were informed about the scientific use of their 
data. During the study, an experienced medical team utilized the Accu-Chek Performa II, (Roche Diagnostics 
GmbH, Germany) and Accu-Chek Softclix lancing device for the random glucose measurement, maintains the 
standards of ISO 15197:2013, while our equipment was specifically configured to record the 1024 time frame of 
averaged PA signal. Masimo Rad-5v Handheld Pulse Oximeter is utilized for the measurement of SpO2 and it 
maintains the standards of ISO 80601-2-61:2017. The blood pressure was measured with the Omron M3 Com-
fort Upper Arm Blood Pressure Monitor and it follows the standards of ISO 81060-2:2018. In order to maintain 
accuracies, all of the devices adhere to ISO standards for measurements. The experimental setup of the device 
is shown in Fig. 2a. The process of data acquisition from a person shown in Fig. 2b and the features like Peak-
to-peak amplitude, RMS values, Positive, and Negative Peaks of the PA signal were captured from the device 
for a person and it was depicted in Fig. 2c. The feature values are varied from person to person with the change 
in the blood glucose values. Among all the features we observed peak-to-peak amplitude of a PA signal varied 
mostly with the glucose values.

Figure 1.   Block diagram of the proposed approach for determining blood sugar value using PA signal.
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Preprocessing
The electrical response of the transducer is low and usually measured in microvolts ( µV). A pre-amplifier and 
amplification circuits are necessary to improve this weak signal. The piezoelectric transducer is susceptible to 
random noise in its operating environment due to its fragile output and it was shown in Fig. 3a. Additional forms 
of distortions include noise from various biological sources and electromagnetic interference from power lines. 
Hence, amplification of the noise-corrupted signal must be performed by considering the Signal-to-Noise Ratio 
(SNR). To reduce the noise and enhance the quality of the signal a Low-Noise Amplifier (LNA) at the front end 
is necessary for optimal signal acquisition. The Analog Modules LNA with model number 351A-2-50-NI is 
chosen due to its low drift and low noise characteristics. The amplifier operated in the non-inverting mode with 
a variable gain of 40−60 dB and a bandwidth of −3 dB. The amplification adds minimal noise to the signal and 
the processed PA signal is shown in Fig. 3b.

Feature extraction
The amount of glucose produced corresponds to the PA pressure signal received by the sample. The calibration 
relies on the amplitude and area-based features of the recorded PA signal. As a result, it’s essential to extract the 
relevant details from the PA signal generated. In the PA signal, we have the parameters like Peak to Peak Ampli-
tude values V pp , Root Mean Square values (RMS), Positive and Negative peak amplitude values, maximum peak 
(Amp max), and minimum peak (Amp min). The V pp value is considered in the algorithm as it varied depending 
on a person’s individual glucose levels. Furthermore, we extracted the biological features of the individuals like 
BMI, Age, and SpO2 for better augmentation. To trace out the importance of the features from our dataset here 
Mutual Information Gain (MI)42,43 algorithm has been implemented for the feature selection and the resulting 
important features of the MI algorithms are shown in Fig. 4.

Calibration for glucose estimation
To estimate glucose levels, the PA measurements obtained from a sample are processed, and n number of signal 
features, denoted as X j,i are computed. These features are used for the creation of the feature vector, and the 
estimation of glucose P g is shown in Eq. (3).
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By utilizing signal features, x j,i , extracted from the PA response of a sample p g and the estimation of the 
sample’s glucose concentration, estcg , can be obtained through a calibration process. The calibration function 
should accurately capture the relationship between the signal features and changes in glucose concentration in 
order to provide precise estimates of the sample’s glucose concentration. The signal features from P g are used to 
create a feature vector ϕ(Pg ) for a d dimensional calibration function given in Eq. (4)

To estimate the glucose concentration estcg a calibration model takes the input features from the PA measure-
ment. The model produces a set of coefficient values θ . The obtained features are applied to a new PA measure-
ment x i  , the estimated glucose can be written as Eq. (5)

Comparisons between the estimated glucose concentrations derived from a set of m measurements and the 
reference glucose concentrations have been made and to compute the estimation value error, J(θ ) can be written 
in Eq. (6)

The J ( θ ) represents the mean square error value. To address the computational and storage challenges asso-
ciated with an increasing number of signal features and the dimension of the calibration function, kernels are 
employed. Kernels offer a solution by eliminating the need for the explicit creation and storage of the complete 
input feature vector. The kernel-based ridge regression44 can be expressed in the following form

Now apply the gram matrix to the Eq. (7) then the equation can be converted into the following form

Putting the value of g(z) in Eq. (8) and by applying kernel trick representation theorem45–48 the set of the 
linear combination of training data is represented in the following form.

k represents the kernel function and we are implementing the ridge regression with the polynomial kernel of 
degree 3, the polynomial kernel is represented as in Eq. (11)

m is the size of the training set and it contains the input feature vector with a set of features like BMI, Age, 
and SpO2, calculated from each measurement. The BMI as one of the features from the feature vector has 
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been implemented in the proposed algorithm. The utilization of larger feature sets in the prediction function 
enhances its expressive power but also increases the risk of overfitting the training data. To mitigate this issue, 
the optimization process takes into account both the estimation error and the coefficient weights. Introducing 
a regularization parameter, � allows for fine-tuning the trade-off between the two factors. By carefully adjusting 
these parameters, the prediction function can strike a clear balance between model complexity and generalization 
performance. It effectively avoids the overfitting and improves the overall accuracy, reliability of the predictions 
which can be shown in the following Eq. (12)

k is the training data of the kernel matrix and refcg is the reference glucose concentration and the set of refer-
ence measurements taken from the individuals

∥

∥f
∥

∥

2

k
 is the Kernel Hilbert Space norm of the objective function and it is given as

The Eq. (12) can be written as

Computing the gradient to the function Eq. (14) the α∗ is obtained as

Using Eqs. (15) and (10) the estimation of glucose can be written as

The selection of the kernel degree and regularization parameter is crucial for accurate prediction and avoid-
ing overfitting in polynomial kernel ridge regression. The kernel degree controls the complexity of the model, 
and the regularization parameter balances the trade-off between fitting the training data and generalization. 
Values for these parameters are methodically explored, and validation data is used for assessment to establish 
the best combination. The prediction accuracy is evaluated by quantitatively comparing the estimated glucose 
concentration estcg to the reference glucose measurements refcg . Metrics such as Root Mean Square Error (RMSE), 
Mean Absolute Difference (MAD), and Mean Absolute Relative Difference (MARD) are considered to precisely 
assess the accuracy of the prediction of glucose. These variables provide crucial details about the model’s overall 
effectiveness in estimating the desired outputs by assessing the degree of agreement between the model’s predic-
tions and actual values.

The systematical exploration of various parameter combinations and calculation of the RMSE values for each 
combination using different kernel operations are reported in Table 1. The amplitude value from the PA signal 
combined BMI value of a person produced the best results, where BMI is a scientifically relevant characteristic 
that has a more pronounced impact on glucose concentration30,49,50. The trace out of the above combination 
Table 2 is implemented for different types of kernel operations with BMI and peak-to-peak amplitude value of 
the PA signal. We have calculated the metrics for each kernel and traced out ridge regression polynomial kernel 
which shows the better result for all the metrics. A dataset of 105 samples is used to train the model, and the 
dataset is split into training and testing portions in an 80:20 ratio. The anticipated outcomes of the model were 
further examined graphically by the Clarke Error Grid Analysis (CEGA) and Bland Altman Plot (BAP) which 
demonstrates the predictable accuracy and dependability of the model.

Integration of IoT to the proposed system
The Raspberry Pi 4 model b board was used for our prototype device. The Raspberry Pi is configured with a 
64-bit Raspbian OS in the dedicated memory card of 16 GB. We have found that the tensor flow 2.6 version is 

(12)J(θ) = min
∥

∥kα − refCg
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(16)estcg = ref Tcg (K + �I)−1Ki

Table 1.   Identification of RMSE values with various physical parameters with PA signal voltage value.

RMSE values (mg/dl)

Specifications Polynomial Laplacian Linear RBF Additive Chi

Only with Vpp 11.34 11.13 14.62 11.22 156.50

Vpp, SpO2 11.06 11.20 11.77 11.88 266.35

Vpp, BMI, SpO2 11.73 13.31 11.59 16.57 10.97

Vpp, BMI, AGE 14.31 43.02 15.08 67.01 13.19

Vpp, BMI, Age, SpO2 14.61 37.15 13.23 70.24 13.04

Vpp, BMI 10.94 14.31 12.81 16.29 11.08
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compatible for the execution of machine learning algorithms on the Raspberry pi board. The Kernel based ridge 
regression is implemented on the Raspberry pi model b38 board. The obtained glucose values from the algorithm 
along with the reference glucose values are transmitted to the ThingSpeak cloud platform39,40. The Message Que 
Telemetry Transport (MQTT)41 protocol has been used to secure the data transmission to the ThingSpeak cloud 
using Transport Layer Security (TLS). This combination enables data integrity, authentication, and encryption 
to provide a secure communication relationship. Furthermore, an Application Programming Interface (API) 
key generated on the platform is used to authenticate with the ThingSpeak cloud. The API key serves as a secure 
credential that enables the application to safely access and send data to the ThingSpeak cloud. The process of 
secure communication includes server authentication, creating a TLS-encrypted connection, and sending data 
across this secure channel. ThingSpeak account is set up to enforce secure connections and limit access to the 
devices with working API credentials.

Results and discussion
The estimated values from the polynomial kernel-based ridge regression are analyzed in CEGA51,52 and BAP53,54. 
The CEGA divides the glucose measurement space into five zones based on the reference glucose value and the 
predicted glucose value. The zones represent different degrees of clinical significance in terms of the impact on 
patient management. The values plotted in Zone-A are the most accurate predictions of glucose values and they 
fall within an acceptable range of the reference values. Predictions in this zone are considered clinically safe, 
as they would likely lead to appropriate treatment decisions. The values which are in Zone-B deviate from the 
reference values but without significant clinical consequences. Finally, the values which are plotted in Zones C 
to E are clinically not acceptable. By visually assessing the distribution of glucose values in the different zones, 
healthcare professionals can quickly evaluate the clinical relevance and accuracy of glucose predictions. Similarly, 
BAP is to used visualize the agreement between the methods and allows for the identification of any systematic 
bias or variable bias. The plot typically includes a horizontal axis representing the mean difference between the 
two methods and the vertical axis represents the difference between two values. The limits of agreement indicates 
the range within which most differences between the two methods fall. About 95% of the variations between 
the two methods of measuring data can be found within the range indicated by the 95% limits of agreement.

Here in our work, we have collected 105 random average blood samples from our prototype device and the 
accuracy of the result is presented using Fig. 5a CEGA and Fig. 5b BAP plots which shows 100% of our estimated 
glucose values are projected in the Zone-A of CEGA and also falls in between the upper and lower threshold 
values of BAP. The respective RMSE, MAD, and MARD for this category are calculated as 10.94 (mg/dl), 10.13 
(mg/dl), 8.86% and the mean difference, upper and lower limit of agreement values of BAP are -1.47, 17.23,-20.19 
respectively. To further analyze the samples, the data is converted

into two clusters based on the values of BMI. In the first cluster a normal BMI value which is less than 25 is 
considered and the data size of the cluster is 52 pairs of random blood sample readings. In the other cluster the 
BMI greater than 25 is considered as obese and overweight persons and the size of the data is 53 pairs. In both 
clusters, we utilized the PA signal amplitude value and the BMI value of a person as variables in the algorithm. 
The training and testing of the data are divided into 80:20 ratio. The graphical plot of the Fig. 6a CEGA and Fig. 6b 
BAP shows the accuracy of normal BMI cluster. The statistical parameters values of RMSE, MAD, and MARD 
are obtained as 11.80 (mg/dl), 10.35 (mg/dl), and 9.08%, and the mean difference, upper

and lower limit of agreement values of BAP are -1.53, 20.60, -23.66 respectively. Finally, the plots in Fig. 7a 
CEGA and Fig. 7b BAP validate the second cluster. The values of RMSE, MAD, and MARD are obtained as 
11.32 (mg/dl), 9.92 (mg/dl), 8.67% and the mean difference, upper and limit of agreement values of BAP are 
-0.19, 16.64, -17.03 respectively. The obese person’s estimated values are nearer to the ground truth values which 
are depicted by our algorithm. We have found that all the estimated values fall in the Zone-A of CEGA and in 
between the line of agreement values of BAP in all the clusters. It is identified that the impact of BMI and the PA 
signal amplitude value plays a crucial role for noninvasive in vivo detection of random blood glucose from the 
CEGA, and BAP. Finally, the IoT technique has been implemented using the Thing Speak Cloud Platform for 
the real-time monitoring of the data. For every 15 seconds, the data is sent to the cloud of each person and the 
visual plots of the cloud platform have shown in Fig. 8.

Comparison analysis
In comparison to the existing methods for blood glucose measurement noninvasively using PAS both in vivo and 
in vitro, our proposed technique outperforms in terms of MAD, MARD, and RMSE readings. The comparative 

Table 2.   Statistical parametric values of the different kernels in a ridge regression with PA signal voltage and 
BMI value.

Kernel calibration model Signal features
RMSE
(mg/dl)

MAD
(mg/dl)

MARD
(%)

Linear Vpp, BMI 12.81986 13.24607 11.60143

Laplacian Vpp, BMI 14.31098 10.44692 9.684433

RBF Vpp, BMI 16.29039 12.73354 12.0672

Additive Chi Vpp, BMI 11.08715 11.15355 9.745183

Polynomial Vpp, BMI 10.94 10.15365 8.861604
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study is shown in Table 3. Through our in vivo operations, we have created a sophisticated method that uses the 
PA signal’s peak-to-peak amplitude value to offer precise and accurate results using BMI. A significant number 
of the estimated samples are found to be concentrated in Zone A of the Clarke Error Grid Analysis (CEGA). 
Additionally, the MARD values obtained from the algorithm supported for clinical acceptance. However, more 
samples have to be tested with the same algorithm to determine consistent outcomes before contemplating 
clinical use. These findings are further supported and detailed in Table 4, providing conclusive evidence of the 
efficiency and usefulness of our strategy in obtaining the estimation of precise results.

Conclusions
The proposed IoT based noninvasive in vivo glucose detection approach is based on PAS with random blood 
sample collection. In this work, we traced out that the voltage measurements from the PA signal alone might not 
be adequate for calibration using the Kernel-based Polynomial ridge regression. Therefore we integrated different 
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biological parameters of the body in the algorithm with the PA signal amplitude values. We tried different pos-
sible combinations of the samples and executed the algorithm with the best kernel result. We calculated the 
estimated values of glucose from all the clusters with the combination of PA signal voltage value and BMI in the 
polynomial-based kernel ridge regression. Finally, we achieved a better outcome in terms of MAD, MARD, and 
RMSE values for noninvasive in vivo detection of random blood glucose compared to the prior state of the arts. 
Moreover, our estimated values are lies in the Zone-A of CEGA in all the clusters and in the range of upper and 
lower threshold values of BAP. Finally, for real-time data monitoring, we deploy the ML regression algorithm at 
the device level and identify the estimated values on the Thing Speak cloud platform. The execution time of our 
algorithmic method using an Intel Core i5-8500T CPU @2.10 GHz processor is found 26.412 ms, representing 
the result of the calculation time produced by our experimental setup.

Study subjects
The sensor model was trained and evaluated on a generic population made up of healthy individuals in the age 
group of 23- 65 years included in our study. The study protocol confirms the ethical guidelines of the 1964 Decla-
ration of Helsinki, and the Indian Council of Medical Research (ICMR) 2000, which was approved by the medical 
officer and ethical committee at SRM University-AP India. Using the Accu-Chek Performa II (Roche Diagnostics 
GmbH, Germany) and Accu-Chek Softclix lancing devices, the trained medical staff of SRM University-AP took 
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Figure 7.   Error plots analyze the differences between actual and estimated glucose concentrations using 
polynomial kernel-based ridge regression for the obese and overweight BMI cluster data samples (53 pairs of 
data) (a) CEGA shows the visual representation of the alignment between the real and predicted glucose values. 
(b) BAP shows the average bias and variability between two assessment methodologies.

Figure 8.   Real values and Estimated values of the glucose from the model are visualized on the ThingSpeak 
Cloud platform. (a) Ground Truth Values, (b) Estimated Values obtained from the model.
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105 random blood glucose readings from different subjects. Each subject gave their informed consent for the 
scientific use of data.

Data availability
The Data is confidential and it cannot be disclosed in an open-source platform at the present movement for this 
paper. However, it will be made available on reasonable requests to the corresponding author.

Received: 1 August 2023; Accepted: 3 February 2024

References
	 1.	 Organization, W. H. Global report on diabetes (2020).
	 2.	 Federation, I. D. The 10th Edition of the IDF Diabetes Atlas (2021).
	 3.	 Tang, L., Chang, S. J., Chen, C.-J. & Liu, J.-T. Non-invasive blood glucose monitoring technology: A review. Sensors 20, 6925 (2020).
	 4.	 Dai, T. & Adler, A. In vivo blood characterization from bioimpedance spectroscopy of blood pooling. IEEE Trans. Instrum. Meas. 

58, 3831–3838 (2009).
	 5.	 McKee, J. M. & Johnson, B. P. Real-time chemical sensing of aqueous ethanol glucose mixtures. IEEE Trans. Instrum. Meas. 49, 

114–119 (2000).

Table 3.   Comparison analysis of the statistical parameters for the glucose estimation by previously reported 
works using Photoacoustic Spectroscopy.

Ref no Parameters
MAD values
(mg/dl)

MARD values
(%)

RMSE values
(mg/dl)

Implementation 
approach Regression algorithm No of data samples

Pai et al. 201555 Peak to peak voltage 
values 15.27 11.78 N.A In vitro Linear 30

Pai et al. 201719 Peak to peak voltage 
values N.A 8.84 N.A In vitro Polynomial 24

Pai et al. 201821 Dual frequency voltage 
values 5.23 2.07 7.64 In vitro Gaussian 30

Sim et al. 201820

Microscopic spatial 
information of finger 
at non secreting points 
through image

8.27 9.94 N.A

In vivo PLSR 23 pairs
Microscopic spatial 
information of finger 
at secreting points 
through image

11.98 14.67 N.A

Long et al. 202123

Imaging on human 
tissue N.A N.A 24.24

In vitro PLSR 45Imaging simulated data 
(10dB) N.A N.A 15.69

Imaging simulated data 
(30dB) N.A N.A 13.15

The proposed method
(i) All collected samples

Vpp, BMI Values

10.153 8.861 10.941

In vivo
Ridge with
Polynomial
Kernel

105 pairs of random 
blood samples

(ii) Normal BMI values 10.352 9.080 11.795

(iii) Obese and over-
weight
BMI values

9.921 8.866 11.316

Table 4.   Comparison of CEGA result with previously reported works.

Reference Technique Zone A(%) Zones A &B(%) Zones C-E(%) MARD (%) Method
19 Peak to peak voltage values using photoacoustic spectroscopy 92.86 100.00 0.00 8.84 In vitro

21 Dual frequency peak to peak voltage values using photoacoustic 
spectroscopy 100.00 100.00 0.00 2.07 In vitro

56 Diffuse reflectance 87.50 95.80 4.20 – In vivo
7 Raman spectroscopy 86.66 – – – In vitro
12 Mid Infra red spectroscopy 84.00 – – – In vivo
10 Optical coherence tomography 83.00 99.00 1.00 11.50 In vivo
55 Photoacoustic spectroscopy 82.65 100.00 0.00 11.78 In vitro
57 Photoacoustic spectroscopy 66.50 94.60 5.40 – In vivo & in vitro
20 Photoacoustic spectroscopy 70 100.00 0.00 11.98 In vivo

Proposed method Photoacoustic spectroscopy with Vpp, BMI value 100.00 100.00 0.00 8.86 In vivo



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8352  | https://doi.org/10.1038/s41598-024-53691-z

www.nature.com/scientificreports/

	 6.	 Enejder, A. M. et al. Raman spectroscopy for noninvasive glucose measurements. J. Biomed. Opt. 10, 031114 (2005).
	 7.	 Dingari, N. C. et al. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using raman 

spectroscopy. J. Biomed. Opt. 16, 087009 (2011).
	 8.	 Lambert, J. L., Pelletier, C. C. & Borchert, M. S. Glucose determination in human aqueous humor with Raman spectroscopy. J. 

Biomed. Opt. 10, 031110 (2005).
	 9.	 Fercher, A. F., Drexler, W., Hitzenberger, C. K. & Lasser, T. Optical coherence tomography-principles and applications. Rep. Prog. 

Phys. 66, 239 (2003).
	10.	 Gabbay, R. A. & Sivarajah, S. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with 

diabetes. Diabetes Technol. Ther. 10, 188–193 (2008).
	11.	 Maruo, K., Tsurugi, M., Tamura, M. & Ozaki, Y. In vivo noninvasive measurement of blood glucose by near-infrared diffuse-

reflectance spectroscopy. Appl. Spectrosc. 57, 1236–1244 (2003).
	12.	 Liakat, S. et al. Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomed. Opt. Express 5, 2397–2404 

(2014).
	13.	 Yadav, J., Rani, A., Singh, V. & Murari, B. M. Prospects and limitations of non-invasive blood glucose monitoring using near-

infrared spectroscopy. Biomed. Signal Process. Control 18, 214–227 (2015).
	14.	 Pai, P. P., Sanki, P. K., De, A. & Banerjee, S. Nir photoacoustic spectroscopy for non-invasive glucose measurement. In 2015 37th 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (eds Pai, P. P. et al.) 7978–7981 
(IEEE, 2015).

	15.	 Heise, H. M. Medical applications of nir spectroscopy. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and 
Applications 437–473 (2021).

	16.	 Singh, R. K., Kumar, P. S., Amreen, K., Dubey, S. K. & Goel, S. Disposable miniaturized electrochemical sensing platform with 
laser-induced reduced graphene oxide electrodes for multiplexed biochemical analysis. IEEE Trans. NanoBiosci. (2022).

	17.	 Briers, J. D., Richards, G. J. & He, X.-W. Capillary blood flow monitoring using laser speckle contrast analysis (lasca). J. Biomed. 
Opt. 4, 164–175 (1999).

	18.	 Tanaka, Y., Tajima, T., Seyama, M. & Waki, K. Differential continuous wave photoacoustic spectroscopy for non-invasive glucose 
monitoring. IEEE Sens. J. 20, 4453–4458 (2019).

	19.	 Pai, P. P. et al. Cloud computing-based non-invasive glucose monitoring for diabetic care. IEEE Trans. Circuits Syst. I Regul. Pap. 
65, 663–676 (2017).

	20.	 Sim, J. Y., Ahn, C.-G., Jeong, E.-J. & Kim, B. K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitor-
ing invulnerable to skin secretion products. Sci. Rep. 8, 1–11 (2018).

	21.	 Pai, P. P., De, A. & Banerjee, S. Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic 
measurements and kernel-based calibration. IEEE Trans. Instrum. Meas. 67, 126–136 (2017).

	22.	 Tanaka, Y., Tajima, T. & Seyama, M. Acoustic modal analysis of resonant photoacoustic spectroscopy with dual-wavelength dif-
ferential detection for noninvasive glucose monitoring. IEEE Sensors Lett. 1, 1–4 (2017).

	23.	 Long, H., Chen, B., Li, W., Xian, Y. & Peng, Z. Blood glucose detection based on teager-kaiser main energy of photoacoustic signal. 
Comput. Biol. Med. 134, 104552 (2021).

	24.	 Michaelian, K. H. Photoacoustic IR Spectroscopy: Instrumentation, Applications and Data Analysis (Wiley, 2010).
	25.	 Srichan, C. et al. Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with nir monitoring 

and medical features. Sci. Rep. 12, 1769 (2022).
	26.	 Pleitez, M. A. et al. Windowless ultrasound photoacoustic cell for in vivo mid-ir spectroscopy of human epidermis: Low interference 

by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring 
of glucose in the interstitial fluid. Review of Scientific Instruments84 (2013).

	27.	 Zhao, M. & Ma, Z. From polynomial fitting to kernel ridge regression: A generalized difference filter for encoder signal analysis. 
IEEE Trans. Instrum. Meas. 69, 6212–6220 (2020).

	28.	 Pavlov, K. et al. Sweat loss estimation algorithm for smartwatches. IEEE Access 11, 23926–23934 (2023).
	29.	 Yang, X. & Wen, W. Ridge and lasso regression models for cross-version defect prediction. IEEE Trans. Reliab. 67, 885–896 (2018).
	30.	 Golay, A. & Ybarra, J. Link between obesity and type 2 diabetes. Best Pract. Res. Clin. Endocrinol. Metabol. 19, 649–663 (2005).
	31.	 Gray, N., Picone, G., Sloan, F. & Yashkin, A. The relationship between bmi and onset of diabetes mellitus and its complications. 

South. Med. J. 108, 29 (2015).
	32.	 Ganz, M. L. et al. The association of body mass index with the risk of type 2 diabetes: A case-control study nested in an electronic 

health records system in the united states. Diabetol. Metabol. Syndrome 6, 1–8 (2014).
	33.	 HE, Bays, Chapman, R., Grandy, S. & Group, S. I. The relationship of body mass index to diabetes mellitus, hypertension and 

dyslipidaemia: Comparison of data from two national surveys. Int. J. Clin. Pract. 61, 737–747 (2007).
	34.	 Baker, W. B. et al. Modified beer-lambert law for blood flow. Biomed. Opt. Express 5, 4053–4075 (2014).
	35.	 McDonald, F. A. Photoacoustic determination of small optical absorption coefficients: Extended theory. Appl. Opt. 18, 1363–1367 

(1979).
	36.	 Tam, A. C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986).
	37.	 Zhao, Z., Nissila, S., Ahola, O. & Myllyla, R. Production and detection theory of pulsed photoacoustic wave with maximum 

amplitude and minimum distortion in absorbing liquid. IEEE Trans. Instrum. Meas. 47, 578–583 (1998).
	38.	 Karthikeyan, S. et al. A systematic analysis on raspberry pi prototyping: Uses, challenges, benefits, and drawbacks. IEEE Internet 

of Things Journal (2023).
	39.	 Djehaiche, R., Aidel, S., Sawalmeh, A., Saeed, N. & Alenezi, A. H. Adaptive control of iot/m2m devices in smart buildings using 

heterogeneous wireless networks. IEEE Sens. J. 23, 7836–7849 (2023).
	40.	 Kulkarni, M. B., Goyal, S., Dhar, A., Sriram, D. & Goel, S. Miniaturized and iot enabled continuous-flow-based microfluidic pcr 

device for dna amplification. IEEE Trans. Nanobiosci. 21, 97–104 (2021).
	41.	 Mishra, B. & Kertesz, A. The use of mqtt in m2m and iot systems: A survey. IEEE Access 8, 201071–201086 (2020).
	42.	 Battiti, R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5, 

537–550 (1994).
	43.	 Wang, X., Guo, B., Shen, Y., Zhou, C. & Duan, X. Input feature selection method based on feature set equivalence and mutual 

information gain maximization. IEEE Access 7, 151525–151538 (2019).
	44.	 Shawe-Taylor, J. et al. Kernel Methods for Pattern Analysis (Cambridge University Press, 2004).
	45.	 Engel, Y., Mannor, S. & Meir, R. The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 52, 2275–2285 (2004).
	46.	 Kivinen, J., Smola, A. J. & Williamson, R. C. Online learning with kernels. IEEE Trans. Signal Process. 52, 2165–2176 (2004).
	47.	 Liu, W., Pokharel, P. P. & Principe, J. C. The kernel least-mean-square algorithm. IEEE Trans. Signal Process. 56, 543–554 (2008).
	48.	 Kung, S. Y. Kernel Methods and Machine Learning (Cambridge University Press, 2014).
	49.	 Razak, F. et al. Ethnic differences in the relationships between obesity and glucose-metabolic abnormalities: a cross-sectional 

population-based study. Int. J. Obes. 29, 656–667 (2005).
	50.	 Dye, L., Boyle, N. B., Champ, C. & Lawton, C. The relationship between obesity and cognitive health and decline. Proc. Nutr. Soc. 

76, 443–454 (2017).
	51.	 Clarke, W. L., Cox, D., Gonder-Frederick, L. A., Carter, W. & Pohl, S. L. Evaluating clinical accuracy of systems for self-monitoring 

of blood glucose. Diabetes Care 10, 622–628 (1987).



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8352  | https://doi.org/10.1038/s41598-024-53691-z

www.nature.com/scientificreports/

	52.	 Stöckl, D., Dewitte, K., Fierens, C. & Thienpont, L. M. Evaluating clinical accuracy of systems for self-monitoring of blood glucose 
by error grid analysis: Comment on constructing the upper a-line. Diabetes Care 23, 1711–1712 (2000).

	53.	 Myles, P. S. & Cui, J. I. using the bland–altman method to measure agreement with repeated measures (2007).
	54.	 Giavarina, D. Understanding bland altman analysis. Biochemia medica 25, 141–151 (2015).
	55.	 Pai, P. P., Sanki, P. K., Sarangi, S. & Banerjee, S. Modelling, verification, and calibration of a photoacoustics based continuous non-

invasive blood glucose monitoring system. Rev. Sci. Instrum. 86, 064901 (2015).
	56.	 Maruo, K. et al. Noninvasive blood glucose assay using a newly developed near-infrared system. IEEE J. Sel. Top. Quantum Electron. 

9, 322–330 (2003).
	57.	 Weiss, R., Yegorchikov, Y., Shusterman, A. & Raz, I. Noninvasive continuous glucose monitoring using photoacoustic technology-

results from the first 62 subjects. Diabetes Technol. Ther. 9, 68–74 (2007).

Acknowledgements
P.P, A.H, P.M, M.H, acknowledges the support of SRM University-A.P research fund. P.K acknowledges the sup-
port from the Department of Science and Technology - Science and Engineering Research Board (DST-SERB), 
Government of India ([CRG/2022/007866]) for funding the project.

Author contributions
P.P.; Planned, Implemented, Modelled, Data acquisition, Statistical analysis, and Wrote the Original Draft, A.H.; 
Data Acquisition, M.H.; Data Modelling, B.J.; Statistical analysis, P.M.; Modifying the Manuscript Draft and P.K.; 
Planned, Implemented, Modelled, Data acquisition, Statistical analysis, and Wrote the Original Draft.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.K.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Augmenting authenticity for non-invasive in vivo detection of random blood glucose with photoacoustic spectroscopy using Kernel-based ridge regression
	Background
	Working principle of PAS

	Methodology
	Proposed method for glucose detection
	Experimental analysis
	Hardware setup for in vivo testing of glucose detection
	Preprocessing
	Feature extraction
	Calibration for glucose estimation
	Integration of IoT to the proposed system


	Results and discussion
	Comparison analysis

	Conclusions
	Study subjects
	References
	Acknowledgements


