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Real‑time prediction of bladder 
urine leakage using fuzzy inference 
system and dual Kalman filtering 
in cats
Amirhossein Qasemi , Alireza Aminian  & Abbas Erfanian *

The use of electrical stimulation devices to manage bladder incontinence relies on the application of 
continuous inhibitory stimulation. However, continuous stimulation can result in tissue fatigue and 
increased delivered charge. Here, we employ a real‑time algorithm to provide a short‑time prediction 
of urine leakage using the high‑resolution power spectrum of the bladder pressure during the presence 
of non‑voiding contractions (NVC) in normal and overactive bladder (OAB) cats. The proposed method 
is threshold‑free and does not require pre‑training. The analysis revealed that there is a significant 
difference between voiding contraction (VC) and NVC pressures as well as band powers (0.5–5 Hz) 
during both normal and OAB conditions. Also, most of the first leakage points occurred after the 
maximum VC pressure, while all of them were observed subsequent to the maximum VC spectral 
power. Kalman‑Fuzzy method predicted urine leakage on average 2.2 s and 1.6 s before its occurrence 
and an average of 2.0 s and 1.1 s after the contraction started with success rates of 94.2% and 100% 
in normal and OAB cats, respectively. This work presents a promising approach for developing a 
neuroprosthesis device, with on‑demand stimulation to control bladder incontinence.

Two primary bladder functions, urine storage and micturition, are coordinated by the lower urinary tract (LUT) 
neural activity. Neurologic lesions (e.g. spinal cord injury, multiple sclerosis, Parkinson’s disease, and others) can 
affect the LUT  functions1. A syndrome that is associated with the lower urinary tract dysfunction is overactive 
bladder (OAB), which is defined as “urinary urgency, with or without urge incontinence, usually with frequency 
and nocturia” by the International Continence Society (ICS)2,3.

Sacral neuromodulation (SNM) is an established electrical stimulation system for treatment of  OAB4–8. In 
addition to SNM, electrical stimulation of other nerve locations has shown promising results for the manage-
ment of patients with OAB and preventing urinary  incontinence4–8. Several studies have shown that electrical 
stimulation applied to the pudendal  nerve9–13, sacral dorsal root ganglion (DRG)14,15, and pelvic  nerve16,17, at 
certain frequencies can inhibit bladder hyperreflexia, maintain continence, and increase the bladder capacity. In 
these studies, the inhibitory pathways were stimulated continuously, and habituation in response to continuous 
stimulation may affect the effectiveness of bladder  inhibition18,19, as has occurred for sympathetic skin response 
during repeated electrical  stimulation20.

To overcome the problem of continuous stimulation, a conditional stimulation scheme has been proposed, in 
which the stimulation is triggered at the onset of an involuntary bladder  contraction21. Conditional stimulation 
has the potential to reduce the habituation of inhibitory  reflexes22 and prevent loss of continence. This enables 
the bladder to store more urine before an uncontrollable contraction occurs.

A critical issue in conditional stimulation is the requirement of a signal to determine the onset of a hyper-
reflexive bladder contraction. The pudendal nerve trunk (PNT) electroneurogram (ENG) has been used to detect 
the onset of hyper-reflexive bladder contraction in alpha-chloralose anesthetized cats during isovolumetric 
condition using the cumulative sum (CUSUM)  algorithm23. It was demonstrated that the CUSUM algorithm 
performed better than either a constant threshold or a dynamic threshold algorithm in detecting hyper-reflexive 
bladder contraction. Also, it was demonstrated that conditional stimulation controlled by PNT ENG can increase 
the bladder capacity compared to continuous  stimulation20. Furthermore, it has been shown that the afferent 
sacral root nerve activity (S1 nerve root) can be utilized to detect hyperreflexia-like bladder contractions using 
the CUSUM  algorithm24.
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Monitoring the Electromyography (EMG) of the external anal sphincter (EAS) and external urethral sphincter 
(EUS) has been also proposed for detecting bladder  contraction25–27. It was shown that the onset of bladder con-
tractions can be detected by CUSUM analysis of the EAS EMG in both synergic and dyssynergic cats as well as 
 humans25. The EUS EMG has also been proposed for the detection of bladder contractions in patients with both 
neurogenic detrusor overactivity (NDO) and detrusor sphincter dyssynergia (DSD)26,27. The detection method 
is based on the kurtosis-based scaling function of the root mean square (RMS) of EMG over a sliding window. 
Kurtosis is a measure of the tailedness of a distribution and it is assumed that undesired bladder contractions 
occur during a single motor unit contraction, resulting in a high value of kurtosis. On the other hand, a strong 
continuous bladder contraction leads to a low value of kurtosis.

Several studies have demonstrated the utilization of the measured or estimated bladder pressure to detect the 
onset of bladder  contraction28–35. Crossing the bladder pressure from a predefined threshold (e.g. 10  cmH2O)28 
and monotonic increasing the estimated bladder pressure from a predefined pressure threshold for a period of 
 time33,34 have been proposed as the stimulation trigger in a closed-loop control. However, bladder pressure may 
be susceptible to influence from various artifacts, such as bladder non-voiding contraction (NVC) caused by 
exercise, coughing, laughing, and sneezing. To cope with this problem, wavelet decomposition of the measured 
bladder pressure was used to decompose the bladder contraction with voiding contraction (VC) from  NVC31. It 
was assumed that the detail component at the fifth level corresponds to the artifact and the coarse component 
to the bladder contraction.

Streng et al.29 investigated the pattern changes of the bladder pressure during filling the bladder in rats. It 
was demonstrated that the amplitude and frequency of the phasic activity changed during the filling phase. In 
the early part of the filling, no oscillation could be observed (phase 0). The phase 0 was followed by a period 
with slow oscillation (with frequency below 0.1 Hz). Then, this phase was followed by a period of small, fast 
oscillation that superimposed on the slow oscillation with a larger amplitude (phase II). In the final phase (III), 
immediately before micturition, the frequency of the oscillations decreased, and the amplitude increased. Due 
to these changes in the frequency pattern of the bladder pressure prior to voiding, some studies have developed 
methods to detect and predict the onset of bladder voiding  contraction30,32,35. Clavica et al.30 developed a method 
for prediction of voiding contraction in intact and OAB anesthetized rats based on the power of the bladder 
pressure in the band of 0.2–0.6 Hz. The mean power of the band of 0.2–0.6 Hz during 100 s before the start of 
contraction was considered as the threshold. Then, the power of each 10 s window of the bladder pressure in the 
band of 0.2–0.6 Hz was compared to the defined threshold for prediction. The real-time of this algorithm was 
implemented with dorsal penile nerve (DPN) stimulation in an anesthetized  rat32.

Recently, a method based on machine learning was proposed for the prediction of voiding contraction using 
the band-power of the measured bladder pressure in anesthetized  rats35. A linear discriminant analysis (LDA) 
classifier using the band-power of the measured bladder pressure as the feature inputs was able to predict void-
ing contractions by more than 25 s in advance. But this method needs a training phase. Also, predicting VCs 
25 s in advance requires long-lasting stimulation time, which may cause tissue fatigue or increase battery power 
consumption.

All previous studies have primarily focused on detecting the onset of VCs, defined as either an increase in 
baseline pressure preceding a VC or the appearance of high-frequency oscillations in a rat’s bladder pressure. The 
primary purpose of detecting the onset of contractions is to utilize it as the stimulation trigger signal for incon-
tinence control, aiming to prevent urine leakage. However, in the case of the neurogenic bladder with detrusor 
overactivity resulting from suprasacral spinal cord injury, high pressure NVCs (i.e., non-phasic contractions) 
occur that may or may not precede a voiding  contraction36,37.

The major contribution of the current study is to predict short-time urine leakage from intravesical pressure. 
For this purpose, a real-time algorithm based on Kalman filtering and fuzzy logic is developed to predict urine 
leakage in alpha-chloralose anesthetized cats during normal and OAB conditions.

Methods
All animal care and surgical procedures were approved by the Animal Care and Ethics Committee of the Iran 
Neural Technology Research Centre, Iran University of Science and Technology. All protocols and methods 
were performed according to the recommendations and relevant guidelines for the care and use of laboratory 
animals and written informed consent was obtained from all pet owners upon recruitment. Moreover, the study 
was carried out in compliance with the ARRIVE guidelines.

Surgical preparation and setup equipment
Twelve sexually intact adult domestic short-hair male cats (7–19 month, 1.9–5.8 kg, median: 2.9 kg) were used 
in this study. Animals with irregular voiding period, feline herpesvirus, calicivirus, chlamydia, toxoplasmosis, 
and low weight compared to their body structure were excluded from the experiment before surgery. In two 
cats, the catheter was blocked and fluid infusion into the bladder was interrupted. Two cats were also excluded 
due to a non-reflexive bladder after the initial dose of alpha-chloralose. Finally, eight cats were recruited in this 
study. Anesthesia was induced in a chamber with 5% of isoflurane carried by 100%  O2 and maintained with 
endotracheal intubation during surgery. To facilitate the metabolization of isoflurane, the surgery was limited 
to a duration of less than three hours. After surgery, anesthesia was induced by alpha-chloralose (Sigma C0128, 
Sigma-Aldrich) with initial dose of 50 mg/kg and followed by supplemental doses of 10 mg/kg as required. The 
alpha-chloralose powder was thoroughly dissolved in sterile saline solution (1% concentration) over approxi-
mately 30 min at a temperature of 90 °C. Subsequently, it was administered intravenously at a controlled rate of 
0.5 ml/min, which effectively minimized the risk of acidosis. Gentamicin (1.2 mg/kg, SQ) and ketoprofen (5 mg/
kg, IM) were administered prior to surgery.
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An artificial respirator (LTV-950, Pulmonetic Systems, US) was attached to an endotracheal tube (Size 3, 
Biotek Medical Technology Co., China) to measure end-tidal  CO2. Blood oxygen saturation level  (SpO2), end-
tidal  CO2, heart rate, eye reflex, and body temperature were monitored continuously throughout the surgical 
process and experimental tests. A polyethylene (PE) 90 tube (inner diameter 0.9 mm, outer diameter 0.5 mm) 
was cannulated into the right carotid artery and connected to a pressure transducer (MX960, Smith Medical, 
UK) for continuous measurement of arterial blood pressure. Body temperature was measured and kept within 
the range of 37–38 °C by a heating pad. A pulse oximeter probe (2054, Masimo, US) was used for measuring the 
heart rate and blood oxygen saturation level  (SpO2). An intravenous injection (0.9% saline, 5% dextrose; 10 ml/
kg/h) was performed using a 22G angiocath canulated into the left cephalic vein. The experimental procedure 
in this study was terminal. At the end of the experiments, the animals were euthanized using potassium chloride 
(10 ml of 2 mEq/ml) under a high rate of isoflurane anesthesia.

Bladder catheter placement
The bladder was exposed through a midline abdominal incision, and a modified suprapubic catheter (14G 
Angiocath) was inserted into the bladder dome and secured with a purse-string suture (4-0 silk suture, Supa, 
Iran). Subsequently, the abdominal wall and skin were closed in layers using 3-0 Nylon sutures (Supa, Iran). A 
3-way connector was used to connect the suprapubic catheter to a pressure transducer (NovaTrans Transducer 
Systems MX860, Smiths Medical, UK) and an infusion pump (SN-50C6, Sino Medical-Device Technology Co., 
China).

The bladder pressure was amplified 900 times using a custom-made amplifier and sampled at a rate of 50 Hz 
using a 12-bit analog-to-digital converter (Advantech PCI-1711L I/O card, Advantech Co., Ltd., Taiwan). A 
suprapubic catheter was used to prevent any blockage of the urethral outlet during each micturition reflex. Fol-
lowing the completion of the surgical procedure, the cat was positioned in a stereotaxic setup (SN-1N, Narishige 
Group Product, Japan). A digital scale (GF-300, A&D Instrument, Japan) was placed beneath the cat to measure 
the leakage point and voided volume. By continuously subtracting the voided volume from the injected volume, 
the residual volume could be calculated. All the signals were simultaneously recorded using a custom-designed 
LabVIEW software. The experimental setup is depicted in Fig. 1.

Cystometrogram (CMG) testing
Prior to the start of the experiment, five CMGs were performed to recover the bladder following surgery. After the 
recovery period, the bladder was filled with body temperature saline (38 °C) using an infusion pump at a physi-
ological rate ranging from 20 to 120 ml/h ( 59.6± 32.2 ml/h). Average of the filling rate for each cat is written in 
Table 1. The pump was turned off whenever urine leakage occurred. Each trial was concluded two minutes after 
the pump was turned off. A 15-min rest interval between fillings was considered sufficient for bladder relaxation. 
To create an acute OAB model, the bladder was irritated with a dilute acetic acid (AA) solution (saline with 0.5% 
glacial acetic acid). The experiment commenced with three preliminary trials of bladder filling using the 0.5% 

Syringe Pump
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AmplifierPCLD/8710

Terminal
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I/O card

Urine Voided Volume

To drain

Intravesical 
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Supra-Pubic 
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Figure 1.  Schematic representation of the experimental setup for recording CMG trials at normal (Saline) and 
OAB (0.5% AA) conditions. The cat is placed on a stereotaxic setup in a prone position to measure intravesical 
pressure, leakage point, and voided volume. Modified suprapubic catheter, pressure transducer, syringe pump, 
and drain syringe are connected via a 3-way connector. A digital scale is placed beneath the cat to measure the 
voided volume. The residual volume can be calculated by continuously subtracting the voided volume from the 
filled volume. The pressure signal is first amplified and then digitalized for processing using a custom-written 
software in LabVIEW.
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AA  solution38. However, these trials were excluded from the data analysis. Three cats were randomly selected 
for the OAB experiment and assigned number cat 6, cat 7, and cat 8.

Prediction model
The structure of the proposed prediction model, custom written in MATLAB (MathWorks, Natick, MA), is shown 
in Fig. 2. The method is based on an adaptive dual Kalman filter (DKF) for estimating the high-resolution power 
spectrum density (PSD) as well as denoised bladder pressure and a fuzzy inference system (FIS) for predicting 
urine leakage. The algorithm is sequentially applied on each new sample of the recorded bladder pressure and 
instantaneous band power and denoised bladder pressure sample are estimated. Then, based on the estimated 
instantaneous power band and pre-defined fuzzy rule base, the decision about the urine leakage is made. The 
rule base, which has been already defined, is used for all sessions of experiments in all cats.

For this purpose, the non-stationary bladder pressure signal was first modeled using an autoregressive 
dynamic model structure. This dynamic structure was selected because of its intrinsic generality and peak 
matching capabilities. It is desirable to estimate the formant frequency (peak) rather than the valley.

Dynamic model of the bladder pressure
The bladder pressure signal can be described by the time-varying dynamic AR  model39 as follows

where x(n) is the bladder pressure signal at time instant n , P is the AR model order which is set to 4 in this 
study, ak is the time-varying model parameters, x(n− k) are delayed samples of the bladder pressure signal, and 
v(n) is an independent and normally distributed Gaussian noise with zero mean. We use DKF to estimate the 
time-varying AR parameters (i.e., ak ), in which both the states of the dynamical system and its parameters are 
estimated simultaneously, given only the observed signal of the bladder  pressure39. In DKF, two separate Kalman 
filters run concurrently: one for state estimation and another for model parameters estimation. At every time 
step, the state Kalman filter estimates the state using the current estimate ân , while the weight Kalman filter 

(1)x(n) =
∑P

k=1
ak(n)x(n− k)+ v(n)

Table 1.  The results of CMG test for each cat.

#Trial Weight (kg)

Filling rate 
(ml/h)

Bladder 
volume (ml)

Max NVC 
pressure 
 (cmH2O)

Max VC 
pressure 
 (cmH2O)

VC duration 
(s)

Max VC 
pressure Time 
(s)

Leakage 
pressure 
 (cmH2O)

Leakage time 
(s)

Mean Mean± SD Mean± SD Mean± SD Mean± SD Mean± SD Mean± SD Mean± SD

Cat 1 5 5.8 120.0 22.0± 4.7 12.3± 4.6 35.5± 9.5 56.7± 19.6 4.7± 1.2 33.6± 7.7 4.9± 1.1

Cat 2 5 4.8 120.0 13.4± 4.8 25.3± 15.4 69.5± 12.3 111.0± 91.9 3.0± 0.7 43.5± 11.1 4.2± 2.5

Cat 3 5 4.8 120.0 4.2± 3.1 26.1± 8.4 48.4± 7.4 14.8± 11.6 1.8± 0.4 34.1± 5.8 2.9± 0.4

Cat 4 5 3.7 60.0 4.0± 2.1 39.2± 11.7 69.3± 9.8 19.7± 15.0 3.3± 0.9 58.1± 11.8 3.8± 0.8

Cat 5 7 2.8 42.8 3.4± 0.9 9.4± 11.9 47.8± 6.3 34.0± 2.7 6.1± 1.0 41.0± 4.5 6.7± 1.4

Cat 6
Normal 6

2.3
50.0 4.3± 0.9 31.4± 8.1 141.8± 12.9 64.6± 14.3 5.6± 1.2 127.5± 10.4 5.8± 1.4

OAB 8 50.0 1.3± 0.7 22.2± 7.5 138.3± 21.6 47.7± 21.9 3.3± 0.8 123.2± 12.8 3.9± 1.1

Cat 7
Normal 10

2.9
40.0 2.2± 0.5 5.8± 9.7 71.6± 17.1 13.4± 2.4 2.2± 0.6 46.8± 6.6 2.4± 0.8

OAB 7 40.0 1.4± 0.2 0.8± 2.1 92.7± 17.1 16.3± 4.1 2.6± 2.2 51.0± 4.0 2.0± 0.2

Cat 8
Normal 9

1.9
41.1 2.4± 0.4 20.2± 6.0 84.8± 6.6 11.5± 3.1 1.9± 0.7 64.9± 5.6 2.6± 1.1

OAB 6 30.0 1.6± 0.1 NoNVC 74.1± 2.0 14.4± 2.6 1.9± 0.3 59.1± 1.6 2.3± 0.4

Normal 52 3.5 66.9 6.0± 6.5 19.4± 14.1 72.7± 31.3 36.0± 41.3 3.5± 1.8 56.8± 28.8 4.0± 1.9

OAB 20 2.4 40.5 1.7± 0.4 8.1± 11.5 103.1± 31.7 26.7± 20.2 2.7± 1.4 78.7± 34.5 2.8± 1.1

Total 72 3.6 59.6 4.8± 5.9 16.2± 14.3 81.1± 34.1 33.4± 36.8 3.2± 1.7 62.9± 31.8 3.7± 1.8

Figure 2.  The structure of the proposed approach for urine leakage prediction from intravesical pressure.
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estimates the parameter using the current state estimate x̂n 39. The dynamic system (Eq. (1)) can be represented 
in the stat-space model as follows

where x(n) is the state of the process, y(n) is the observable at time n, A(n− 1) is the process matrix, H(n) 
is the measurement matrix, and w(n) and v(n) are the process and measurement noise, respectively, which are 
assumed to be zero-mean Gaussian noise. The measurement matrix is H(n) =

[
1 0 · · · 0

]
 . The time-varying 

AR model coefficients and process and measurement noise variance are unknown which need to be estimated 
at each time step.

The parameter update for the weight Kalman filter is

where â−n  is a prior parameter estimate at time step n given knowledge of the process prior to step n , ân is 
a posterior parameter estimate at time step n given measurement yn , Ka

n is a Kalman gain specified for the 
parameter equation, x̂−n  is a prior state estimate at step n given the knowledge of the process prior to step n , yn is 
the measurement at time instant n , and � is the forgetting factor.

The state update for the state Kalman filter is

where Kx̂,n is Kalman gain specified for state equation, x̂n is a posterior state estimate at time step n given meas-
urement yn , P−x̂,n is a prior estimate error covariance for state equation, Px̂,n is a posterior estimate error covari-
ance for state equation, and Rv = qI  and Rw are process and measurement noise covariance for state equation, 
respectively. The structure of DKF is schematically is shown in Fig. 3.

(2)





x(n)
x(n− 1)
x(n− 2)

...

x
�
n− p+ 1

�




=





a1(n) a2(n) · · · ap−1(n) ap(n)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0









x(n− 1)
x(n− 2)

...

...

x
�
n− p

�




+





w(n)
0
0
...
0





(3)
x(n) = A(n)x(n− 1)+ v(n)

y(n) = H(n)x(n)+ w(n)

(4)
{
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Figure 3.  Structure of the adaptive DKF for estimating AR coefficients and denoised bladder pressure.
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Noise covariance estimation
In this study, we employ the discrete wavelet transform (DWT) to estimate the measurement noise. The DWT 
is a digital implementation technique for wavelet transform. It decomposes a signal into a set of mutually 
orthogonal wavelet basis functions by a convolution between an original signal and two filters: a high-pass filter 
that computes wavelet detail coefficient and a low-pass filter that computes wavelet approximation coefficient. 
To estimate the measurement noise, at each time step, the DWT using Daubechies-3 mother wavelet is applied 
to a sliding window. The variance of the reconstructed bladder pressure, obtained using the detail coefficient 
at the first level of decomposition, is considered as the estimated variance of the measurement noise (i.e., Rw).

Instantaneous PSD estimation
The AR PSD of the bladder pressure using the estimated AR parameters by the DKF is used to analyze the 
time–frequency representation of the bladder pressure during bladder filling. The average of the power spectrum 
at the band (0.5–5 Hz) is used as the feature for leakage prediction. This band is selected because the bladder 
changes occur below 5  Hz40. To adjust the data recorded from different cats to a common scale and improve the 
generalizations of the prediction mode, the recorded bladder pressure and the estimated band power spectrum 
were normalized. For this purpose, the mean and variance of the pressure, as well as the estimated band power 
spectrum, were calculated from the first trial of the experiment for each cat, and these values were used for the 
Z-score normalization of the data. Then, the data underwent min–max normalization to scale them between 
0 and 1.

Fuzzy leakage prediction
In this study, we use FIS to predict bladder urine leakage. Fuzzy models offer a different perspective on modeling 
complicated systems. Their simplicity and ease of use without requiring training make them well-suited for real-
time processes and biomedical applications that involve black-box systems. A fuzzy inference system consists 
of three basic components: inference rule base, fuzzification, and defuzzification (Fig. 4a). The fuzzification and 
defuzzification are the interfaces between the fuzzy systems and the crisp systems. The rule base includes a set of 
“If… Then…” rules. Each rule describes a relation between the input fuzzy sets and the output fuzzy sets. Takagi, 
Sugeno and Kang (TSK)41 is one of the most used fuzzy modeling techniques that employs If–Then rules with 
fuzzy antecedents and a mathematical function in the form:

where k is the number of rules, xj(j = 1, 2, . . . , r) is the j th input, yi is the output of fuzzy rules Ri , 
µAi

1
,µAi

2
, . . . ,µAi

r
 are fuzzy sets that are characterized by the membership function µAi

j
(xj) . TSK does not require 

a defuzzification process and the µAi
1
 output is calculated by a linear combination of the  consequents41. The final 

output of the TSK fuzzy system ( y ) is computed as follows:

The complete structure of the FIS is shown in Fig. 4.

Fuzzy sets and variables
In the proposed fuzzy inference system, inputs are the pressure and the spectral power at the band (0.5–5 Hz) 
and the output is the estimated leakage point which can take the value between 1 and − 1. The values 1 and − 1 
represents the highest probability of being associated with leakage and non-leakage event, respectively. By setting 
a constant threshold (zero) on fuzzy outputs, outputs greater or equal to zero classify as leakage events. Gaussian 
membership functions are selected for the input variables as

where “ A ” represents the fuzzy sets depicted in Fig. 4b, ci and σ j are the center and the width of the i th Gaussian 
membership function, respectively, and xj represents bladder pressure or band power. The membership functions 
parameters (i.e., ci and σ j ) are fixed and tabulated in Fig. 4c.

Fuzzy rules
Using a predefined rule table (Fig. 4d), the inference engine maps the input fuzzy sets to an output fuzzy set. The 
fuzzy rules were heuristically defined based on the prior knowledge obtained from the literatures and expert, then 
tuned from data obtained from trial 1 of cat 1, thereafter used for prediction on all cats without any re-adjustment. 
Fuzzy rules 3D surface is shown in Fig. 4e.
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Performance evaluation
To assess the performance of the proposed method in prediction of the urine leakage, the bladder pressure signal 
is divided into three intervals (Fig. 5):

• Pre-leakage interval: The 5-s interval prior to the onset of first leakage point.
• Non-leakage interval: The interval preceding the pre-leakage interval.
• Post-leakage interval: The interval after the first leakage point.

Then, the following performance criteria are defined as

(11)Success Rate(%) =
TP

TP + FP

(12)Sesitivity(%) =
TP

TP + FN

Figure 4.  (a) Fuzzy inference system structure includes fuzzification interface, TSK inference engine, and 
defuzzification interface. (b) Fuzzy sets and membership functions for fuzzy input and output variables. VS 
(very small), S (small), M (medium), L (large), and VL (very large) are fuzzy sets for input variables. 1 and − 1 
represent leakage and non-leakage events for output variable, respectively. (c) Membership function parameters 
for fuzzy logic classifier’s input variables. (d) Fuzzy rules table for urine leakage prediction. (e) Three-
dimensional surface of fuzzy rules.
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where

• True positive (TP): Prediction during the pre-leakage interval.
• True negative (TN): Non-prediction during non-leakage interval.
• False positive (FP): A leakage prediction during the non-leakage or post-leakage interval. A prediction during 

post-leakage is considered as FP if no leakage is predicted before the first leakage.
• False negative (FN): Non-prediction during pre-leakage interval.

To determine the starting points of NVC and VC, the instants of the band power that crosses the baseline 
power value were manually determined from the band power plot and were assigned the starting points of NVC 
and VC. Moreover, different measures were also reported to evaluate the proposed method as follows (Fig. 5):

• Leakage pressure (i.e., the pressure at the time instant of the first leakage point)
• Leakage power (i.e., the band power at the time instant of the first leakage point)
• Leakage time (i.e., the first urine leakage time relative to the start of VC),
• Max VC pressure, (i.e., the maximum pressure associated with the VC),
• Max VC power, (i.e., the maximum band power associated with the VC),
• Max VC pressure time (i.e., the time of the maximum pressure relative to the start of VC),
• Max VC power time (i.e., the time of the maximum band power relative to the start of VC),
• Max NVC pressure (i.e., the maximum pressure associated with the largest NVC),
• Max NVC power (i.e., the maximum band power associated with the largest NVC),
• Leakage prediction time (i.e., the urine leakage prediction time relative to the actual leakage time),
• Delay time (i.e., urine leakage prediction time relative to the start of VC),
• Pressure increase (i.e., the bladder pressure at the instant of the predicted leakage point),
• Normalized leakage pressure (i.e., pressure increase/max VC pressure),
• Normalized delay time (i.e., delay time/leakage time).

One-way ANOVA followed by the post-hoc Tukey–Kramer’s multiple comparison test was used to assess the 
statistical difference of the results, and p < 0.05  (one star), p < 0.01  (two stars), p < 0.001 (tree stars) indicated 
a significant difference.

(13)Specificity(%) =
TN

TN + FP

...
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Figure 5.  Different measures for evaluating the CMG trials and proposed method in leakage prediction: 
Leakage point (red circle), predicted leakage (pink square), start of VC (green circle), start of NVC (orange 
circle), bladder pressure (black line), and bladder band power (blue line). A leakage detection during the pre-
leakage is considered as the true positive (TP) and during the non-leakage or post-leakage interval as the false 
positive (FP). A prediction during post-leakage is considered as FP if no leakage is predicted before the first 
leakage.
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Results
CMG test
In total, 72 CMG trials of the experiment were conducted on 8 cats (52 trials with saline infusion in cats 1–8 
and 20 trials with 0.5% AA infusion in cats 6–8) with an open urethra. Figure 6 shows typical CMG trials with 
saline (normal) and AA (OAB) infusions. It can be seen that the dynamics of the bladder pressure with saline 
infusion are different from that with AA infusion. NVCs before voiding contraction are observed during bladder 

Figure 6.  An example of the bladder CMG during normal condition in cat 2, trial 4 (a) and cat 4, trial 1 (b). 
An example of the CMG during OAB condition in cat 7, trial 1 (c) and cat 8, trial 5 (d). The right plots show the 
close-up view of a segment of the recorded bladder pressure.
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filling with saline (Fig. 6a,b), but the bladder does not show NVC during filling with AA (Fig. 6c,d). All 72 trials 
of experiment can be seen in the supplementary materials in normal (Supplementary Fig. S1) and OAB (Sup-
plementary Fig. S2) conditions.

Table 1 summarizes the measured parameters during CMG tests in normal and OAB conditions including 
bladder volume, max NVCs pressure, max VC pressure, VC duration, max VC pressure time, leakage pressure, 
and leakage time. The range of the bladder volume, max VC pressure, VC duration, max VC pressure time, 
leakage pressure, and the leakage time vary from 1.6 to 29.4 ml ( 6.0± 6.5 ml), 34.1 to 160.9  cmH2O ( 72.7± 31.3 
 cmH2O), 7.6 to 235.5 s ( 36.0± 41.3 s), 1.2 to 7.4 s ( 3.5± 1.8 s), 23.2 to 139.9  cmH2O ( 56.8± 28.8  cmH2O), and 
1.2 to 8.6 s ( 4.0± 1.9 s), respectively, during saline infusion (cat 1–8, 52 trials).

In OAB condition bladder volume, max VC pressure, VC duration, max VC pressure time, leakage pressure, 
and the leakage time ranged from 1.2 to 2.6 ml ( 1.7± 0.4 ml), 64.0 to 181.7  cmH2O ( 103.1± 31.7  cmH2O), 10.2 
to 79.4 s ( 26.7± 20.2 s), 1.1 to 6.2 s ( 3.5± 1.8 s), 44.2 to 141.5  cmH2O ( 56.8± 28.8  cmH2O), and 1.7 to 6.0 s 
( 2.8± 1.1 s), respectively (cat 6–8, 20 trials).

Bar plot of the measured parameters is shown in Fig. 7. The results indicate that there is significant difference 
between the number of NVC during the saline and AA infusion ( p < 0.01) . The filling time between normal 
( 3.8± 1.1 min) and OAB ( 2.7± 0.9 min) trials exhibits a significant difference ( p < 0.01 ). Therefore, the lower 
number of NVCs may related to the very small OAB volumes, as there is not sufficient filling time for NVCs 
to occur. Also, Max NVC pressures during saline and AA infusions are significantly different ( p < 0.05 ). The 
leakage pressure as well as the VC duration is not significantly different.

The results point out that there is no significant difference between max VC pressures during filling with saline 
and AA. It has been already reported that there is no significant difference in the max VC pressures in saline 
and AA in  cats38 and  rats42. Bladder volume significantly reduces when filled with AA ( p < 0.001 ), indicating 
the ability of AA to simulate OAB in cats. This observation is in agreement with other studies reporting the 
significant reduction in bladder capacity during filling with AA in  cats38 and  rats42.

Time–frequency analysis
Figure 8 shows the AR PSD of the bladder pressure using DKF during a typical trial of an experiment with 
saline (cat 1, trial 2, Fig. 8a) and AA (cat 8, trial 6, Fig. 8d) infusions. The plots also show the recorded bladder 
pressure, leakage point, the infused volume, the residual volume, the voided volume, and the average of AR PSD 
at the band (0.5–5 Hz). The time–frequency analysis based on DKF shows different patterns of event-related 
synchronization (ERS) associated with the phasic (prodromal) and non-phasic (non-voiding) contractions. 
During this trial of the experiment with saline infusion (cat 1, trial 2, Fig. 8a), the max VC pressure and the max 
NVC pressure were 45.1  cmH2O and 14.5  cmH2O, respectively. Max VC power and the max NVC power were 
26.9 dB and 9.1 dB, respectively. The leakage observed 3.9 s after the start of the contraction, when the bladder 
volume reached 17.8 ml. The leakage occurred 1.7 s after the max VC power and 0.1 s after the max VC pres-
sure. During simulating OAB condition with AA infusion (cat 8, trial 6, Fig. 8d), the max VC pressure and the 

Figure 7.  Average of the measured values from CMG test over 52 normal trials in 1–8 cats (gray bar), 20 
normal trials in cat 6–8 (cyan bar), and 20 OAB trials in cat 6–8 (red bar).
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max NVC pressure were 73.4  cmH2O and 0.0  cmH2O, respectively. Max VC power and the max NVC power 
are 54.2 dB and 0.0 dB, respectively. Furthermore, the leakage took place 2.4 s after the start of the contraction, 
when the bladder volume reached 1.7 ml. This leakage event occurred 1.3 s after the max VC power and 0.5 s 
after the max VC pressure.

Table 2 summarizes the results of the time–frequency analysis of the bladder pressure using DKF for both 
conditions. The time–frequency analysis of all 72 trials of the experiment can be seen in the supplementary 
materials in normal (Supplementary Fig. S1) and OAB (Supplementary Fig. S2) conditions.

Figure 9a shows the average of the max VC pressure, max NVC pressure, and the leakage pressure over all 
cats during saline infusion as well as during AA infusion. It can be seen that, in both normal and OAB condition, 
the average of the leakage pressure is significantly lower than the max VC pressure ( p < 0.05) and significantly 

First Leakage Point Leakage Point  Infusion Residual Voided

0

50

0
0

0

50
5 s

0

0.5

0

Figure 8.  The results of the time–frequency analysis of a typical bladder pressure during normal and OAB 
conditions using DKF in cat 1, Trial 2 (a) and cat 8, trial 6 (d), respectively. (c) and (f) provides a close-up view 
of the time–frequency analysis. (b) and (e) comprise the pressure versus power band.
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higher than the max NVC pressure ( p < 0.001). Also, the average of max VC pressure is significantly higher 
than the max NVC pressure ( p < 0.001). But there is no significant difference between the max NVC power and 
the leakage point power (Fig. 9b). However, the average of the leakage power is significantly lower than the max 
VC power ( p < 0.001). Figure 9c shows that the leakages occurred after the max VC pressure time as well as the 
max VC power time in all cases. The results show that the leakage time and the max VC power time (Fig. 9c) 
are significantly different ( p < 0.01) for both normal and OAB conditions, but there is no significant difference 
between the max VC pressure time and the leakage time ( p = 0.227 for normal and p = 0.798 for OAB). Even, 
the max VC power time is significantly earlier than the max VC pressure time ( p < 0.001 ). These evidences 
indicate that the DKF-PSD can be a suitable criterion for leakage prediction. Figure 10 shows the event time for 
all normal and OAB cats.

Table 2.  The results of measured values extracted from time–frequency analysis of the bladder pressure 
during CMG tests using DKF for each cat.

#Trial

VC Max power (dB) VC max power time (s) NVC max power (dB) Leakage power (dB)

Mean± SD Mean± SD Mean± SD Mean± SD

Cat 1 5 19.1± 9.5 2.6± 1.1 5.9± 3.4 5.8± 2.7

Cat 2 5 30.5± 2.7 1.7± 0.8 10.3± 7.4 16.1± 3.6

Cat 3 5 46.0± 3.9 1.7± 0.4 15.3± 6.7 19.0± 9.7

Cat 4 5 23.8± 9.3 1.6± 0.7 11.4± 1.0 7.0± 2.8

Cat 5 7 7.3± 1.9 4.4± 2.1 0.6± 1.1 3.9± 1.3

Cat 6
Normal 6 60.9± 7.7 4.1± 1.7 11.6± 4.6 8.1± 4.6

OAB 8 60.7± 7.3 2.4± 0.9 8.2± 6.6 8.0± 3.8

Cat 7
Normal 10 31.1± 9.8 1.5± 0.6 2.1± 3.7 8.1± 6.6

OAB 7 36.5± 11.1 1.1± 0.1 0.8± 2.2 6.2± 4.9

Cat 8
Normal 9 49.0± 13.1 1.4± 0.7 6.2± 4.1 6.0± 2.9

OAB 6 48.2± 12.7 1.1± 0.2 NoNVC 5.3± 1.9

Normal 52 34.0± 18.4 2.4± 1.6 7.0± 6.2 8.6± 6.5

OAB 20 48.5± 14.4 1.6± 0.8 3.2± 5.5 6.6± 3.8

Total 72 38.0± 18.4 2.1± 1.5 5.9± 6.2 8.1± 5.9

Figure 9.  Average of the pressure parameters (a), band power parameters (b), time parameters (c) in normal 
(8 cats, 52 trials) and OAB (3 cats, 20 trials) cats during CMG tests. The figure does not present a comparison 
between the normal and OAB results.
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Fuzzy prediction of urinary leakage
Typical results of leakage prediction using proposed method for a trial of the experiment conducted under 
normal (cat 4, trial 1) and OAB (cat 8, trial 1) conditions are shown in Fig. 11.

According to the defined measures (Fig. 5), the fuzzy prediction time, delay time, pressure increase, nor-
malized leakage pressure, normalized delay time, and success rate for each cat and for both normal and OAB 
conditions are summarized in Table 3. The average of measured values is also shown in a bar plot in Fig. 12.

The supplementary materials present the outcomes of the fuzzy prediction conducted on all 72 experiment 
trials. These results are showcased for the saline infusions (normal) in Supplementary Fig. S1 and for the AA 
infusions (OAB) in Supplementary Fig. S2.

Using the Fuzzy algorithm, on average in normal condition (saline infusion), the urine leakage was predicted 
2.1± 1.0 s before its occurrence and 2.0± 1.4 s after the start of the contraction (delay time) at the bladder 
pressure of 25.3± 11.7  cmH2O (pressure increase) with the success rate, sensitivity, and specificity of 94.2%, 
100%, and 94.2%. The average values of normalized pressure increase, and the normalized delay time were 
37.0± 14.0 % and 48.3± 22.5 %, respectively (cat 1–8, 52 trials).

The proposed method could predict urine leakage in OAB cats (AA infusion) 1.6± 0.4 s before its occurrence 
and with a delay of 1.1± 0.8 s from the start of the contraction at the pressure of 34.0± 18.4  cmH2O (pressure 
increase) with the success rate, sensitivity, and specificity of 100%, 100%, and 100%. The average values of 
normalized pressure increase and the normalized delay time were 32.0± 10.5 % and 37.8± 11.1 %, respectively 
(cat 6–8, 20 trials).

The results show (Fig. 12b) that the leakage pressure is significantly lower than the max VC pressure for both 
normal ( p < 0.001 ) and OAB ( p < 0.001 ) cats. Furthermore, it is evident from Fig. 12b that the delay time is 
significantly shorter than the leakage time in both normal ( p < 0.001 ) and OAB ( p < 0.001 ) cats.

Discussion
In this paper, a method based on a fuzzy inference system and dual Kalman filtering was proposed for urine 
leakage prediction during CMG experiments. Two variables including high-resolution power spectrum estimated 
by DKF and denoised bladder pressure were considered as the input and the leakage time as the output of the 
fuzzy inference system. In contrast to the previous  studies23–35, in which long-lasting prediction or the estimated 
onset of the bladder contraction was used as the stimulation trigger signal, the proposed method predicts the 
instant of the urine leakage. The main motivation in the current study was to provide a short-term prediction of 
the leakage to shorten the stimulation duration and minimize the delivered stimulation which results in battery 
consumption reduction and reduces the tissue fatigue as well as risk of the tissue damage. Although, the model 
was applied offline to the previously collected dataset, but the model can be used in a real-time scenario as it 
showed its ability to predict urine leakage in new unseen data.

The analyses on the 72 trials of experiment in this study show that the 84.7% of the leakages occur 0.8± 0.9 s 
and 85.0% of them 0.6± 0.4 s after the maximum voiding contraction during saline and AA infusion, respectively, 
and 4.0± 1.9 s and 2.8± 1.1 s after the start of contraction. The time–frequency analysis show that the leakage 
occurs 1.7± 1.4 s and 1.2± 0.4 s after the maximum voiding contraction power during saline and AA infusion, 

Figure 10.  The event times occurred for each cat and each trial of experiment (52 normal trials in 8 cats and 
20 OAB trials in 3 cats) including leakage time, max VC pressure time, and max VC power time. Each vertical 
line represents one trial, with the pink diamond, red circle, and blue square indicating leakage time, max VC 
pressure time, and max VC power time, respectively.
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respectively. The proposed method predicts the leakage 2.2± 1.1 s and 1.6± 0.4 s before its occurrence and 
2.0± 1.4 s and 1.1± 0.8 s after the start of contraction in normal and OAB conditions, respectively.

A major advantage of the proposed method is that it is free from defining a threshold and does not require 
pre-training as in the previous  methods23–35. Inter-subject and intra-subject variability reduce the generalization 
ability of the threshold-based methods seriously, which further limited the applications of methods in real life. 

First Leakage Point Predicted Leakage Point Fuzzy Threshold

Leakage Point              Infusion             Residual             Voided

0

80

0.5

5

-1

1

30
0

2

0

100

0.5

5

-1

1

90
0

10

Vo
lu

m
e 

(m
l)

Fu
zz

y 
O

ut
pu

t
Fr

eq
ue

nc
y

(H
z)

Pr
es

su
re

 
(c

m
H

2O
)

a

Vo
lu

m
e 

(m
l)

Fu
zz

y 
O

ut
pu

t
Fr

eq
ue

nc
y 

(H
z)

Pr
es

su
re

 
(c

m
H

2O
)

b

20

-10

35

-10

Time (min)

Time (min)

0

100

0.5

5

1

-1

0

80

0

0.5

5

1

0

-1

10 s

5 s

(dB)

(dB)

Figure 11.  The results of the urine leakage prediction for a typical trial of experiment during normal (a) and 
OAB (b) conditions. Right plots show a close-up view of a selected segment of the bladder pressure and its 
corresponding time–frequency.
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The proposed fuzzy method is based on predefined rules, and these general rules are utilized for prediction in 
all trials of the experiment during both normal and OAB conditions in all cats.

A critical issue in estimation the start of bladder contraction as well as the leakage prediction is NVCs. In 
some  studies30,32,35, prodromal NVCs are utilized as a criterion for detecting VCs. However, detection is in a range 
of 100  s30 or 25  s35 before occurrence of voiding which consequently requires too long stimulation duration to 

Table 3.  The performance of the proposed method in leakage prediction for each cat.

#Trial

Prediction time (s) Delay time (s) Pressure increase  (cmH2O)
Normalized pressure 
increase (%)

Normalized delay time 
(%)

Success rate (%)Mean± SD Mean± SD Mean± SD Mean± SD Mean± SD

Cat 1 5 3.1± 0.9 1.8± 1.2 13.3± 2.8 41.0± 18.4 34.5± 16.9 100

Cat 2 5 4.8± 3.0 1.4± 0.4 24.3± 4.1 35.2± 4.3 40.4± 21.7 40

Cat 3 5 1.3± 0.2 2.1± 1.0 24.9± 7.4 53.2± 20.6 75.1± 45.8 100

Cat 4 5 2.2± 0.4 1.5± 0.9 30.9± 7.9 45.5± 14.2 38.9± 14.2 100

Cat 5 7 2.8± 1.2 3.9± 1.6 20.0± 7.4 42.1± 14.6 57.7± 16.4 100

Cat 6
Normal 6 2.4± 0.4 2.3± 1.3 49.7± 10.8 34.8± 6.0 56.2± 8.8 100

OAB 8 2.0± 0.3 1.9± 0.9 57.4± 6.9 41.9± 5.3 46.3± 12.8 100

Cat 7
Normal 10 1.4± 0.2 1.0± 0.6 17.3± 3.7 26.2± 10.6 38.4± 12.7 100

OAB 7 1.4± 0.2 0.6± 0.1 18.0± 2.7 19.9± 4.7 30.3± 6.3 100

Cat 8
Normal 9 1.6± 0.5 1.2± 0.5 26.5± 2.8 31.5± 5.0 48.9± 18.7 100

OAB 6 1.5± 0.2 0.9± 0.2 25.4± 1.9 34.4± 3.2 36.7± 6.7 100

Normal 52 2.2± 1.1 2.0± 1.4 25.3± 11.7 37.0± 14.0 48.3± 22.5 94.2

OAB 20 1.6± 0.4 1.1± 0.8 34.0± 18.4 32.0± 10.5 37.8± 11.1 100

Total 72 2.0± 1.0 1.7± 1.3 27.7± 14.3 35.6± 13.2 45.4± 20.4 95.8

Max VC Pressure
Delay Pressure
Leakage Pressure

Max VC Pressure Time
Delay Time
Leakage Time

Cat 1-8 (Normal)                Cat 6-8 (Normal)               Cat 6-8 (OAB)

Figure 12.  (a) Average of the prediction performance over 52 normal trials in 8 cats (gray bar), 20 normal 
trials in 3 cats (cyan bar), and 20 OAB trials in 3 cats (red bar). (b) Average of the maximum pressure (max VC 
pressure), average pressure at the instant of leakage (delay pressure), average pressure at the instant of leakage 
prediction (leakage pressure), average time that the max VC pressure has occurred (max VC pressure time), 
average time that the leakage has occurred (delay time), and average time of the leakage perdition (leakage 
prediction).
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control incontinence. Our high-resolution time–frequency analyses using DKF show that the time–frequency 
pattern of the NVCs and VCs are significantly different. Consequently, the utilization of this pattern difference 
within the proposed method enables the prediction of leakage points with a high success rate of 94.2% in normal 
and 100% in OAB.

Three trials in cat 2 were rare cases that were characterized by prolonged, high-amplitude pressure where the 
leakage was occurred either midway or at the end of the duration (see Supplementary Fig. S1, cat 2, trials 1, 2, 
and 3). However, such contraction dynamics were not observed in the subsequent trials of this cat (trials 4 and 
5). In these three trials, the algorithm predicted urine leakage during non-leakage intervals (FP), which occurred 
slightly before high-amplitude voiding contractions.

In this study, different subjects with different levels of bladder volume were engaged (1.6 to 29.4 ml). Different 
levels of bladder volume have been reported in the literatures. For example, the average bladder volumes of 
13.8 ml and 12.6 ml were reported in other  works12,14, respectively. It should be noted that different factors such as 
ethic, weight, maintenance protocol before surgery, anesthesia depth, anesthesia duration may affect the bladder 
volume. As suggested in Xu et al.43, previously administered agents, may reduce the sensation of bladder filling 
for future trials. The average of bladder volumes in this study were 6.0± 6.5 ml in normal and 1.7± 0.4 ml in 
OAB, respectively, which were smaller than that reported in literatures. One factor that may affect the bladder 
volume is weight. In this study, the mean cat weight was 3.5± 1.4 kg ranging from 1.9 to 5.8 kg. It is observed 
that cat 1 and cat 2, which have higher weight compared to the other cats (5.8 kg and 4.8 kg), have a high bladder 
volume ( 22.0± 4.7 ml and 13.4± 4.9 ml). Meanwhile, the weight of the cat 3 is 4.8 kg, but the bladder volume is 
not high ( 4.2± 3.1 ml). However, regardless of whether the bladder volume is low or high, the proposed method 
could predict the urine leakage with a high success rate (94.2% in normal and 100% in OAB).

Anesthesia depth is another important factor that may affect the bladder  volume43. Anesthesia can inhibit the 
central nervous system reflexes and increase the bladder volume. The goal in this study was to imitate natural 
awake condition. Hence, a low-dose of alpha-chloralose (50 mg/kg) was administrated to minimally suppress 
the autonomic bladder reflexes.

The proposed experimental setup for recording CMG trials, along with the identification of a leakage point, 
in alpha-chloralosed anesthetized cats offers a broader range of applicability compared to previous studies 
conducted under isovolumetric  conditions23,24. This approach has been successfully tested on CMGs without 
NVC as well as in the presence of NVC, which could potentially simulate certain OAB models in humans.

The clinical application of the proposed method lies in the development of implantable sensor for measuring 
the bladder pressure. The proposed approach could potentially incorporate implantable pressure  sensor44–46 
for leakage prediction and control of bladder incontinence. However, there are a number of challenges facing 
artificial sensors such as invasiveness, artifacts from patient movement, abdominal pressure changes, and 
material biocompatibility. In previous work, we developed a method for estimating the bladder pressure/volume 
from neural activity recorded directly from the spinal cord gray matter  neurons47. This technique represents a 
promising approach for adapting the proposed method to deal with clinical pathways.

Data availability
All datasets obtained during the current study are available from the corresponding author on reasonable request.
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