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A mathematically rigorous 
algorithm to define, compute 
and assess relevance 
of the probable dissociation 
constants in characterizing 
a biochemical network
Siddhartha Kundu 

Metabolism results from enzymatic- and non-enzymatic interactions of several molecules, is easily 
parameterized with the dissociation constant and occurs via biochemical networks. The dissociation 
constant is an empirically determined parameter and cannot be used directly to investigate in silico 
models of biochemical networks. Here, we develop and present an algorithm to define, compute 
and assess the relevance of the probable dissociation constant for every reaction of a biochemical 
network. The reactants and reactions of this network are modelled by a stoichiometry number matrix. 
The algorithm computes the null space and then serially generates subspaces by combinatorially 
summing the spanning vectors that are non-trivial and unique. This is done until the terms of each 
row either monotonically diverge or form an alternating sequence whose terms can be partitioned 
into subsets with almost the same number of oppositely signed terms. For a selected null space-
generated subspace the algorithm utilizes several statistical and mathematical descriptors to select 
and bin terms from each row into distinct outcome-specific subsets. The terms of each subset are 
summed, mapped to the real-valued open interval (0,∞) and used to populate a reaction-specific 
outcome vector. The p1-norm for this vector is then the probable dissociation constant for this 
reaction. These steps are continued until every reaction of a modelled network is unambiguously 
annotated. The assertions presented are complemented by computational studies of a biochemical 
network for aerobic glycolysis. The fundamental premise of this work is that every row of a null 
space-generated subspace is a valid reaction and can therefore, be modelled as a reaction-specific 
sequence vector with a dimension that corresponds to the cardinality of the subspace after excluding 
all trivial- and redundant-vectors. A major finding of this study is that the row-wise sum or the sum 
of the terms contained in each reaction-specific sequence vector is mapped unambiguously to a 
positive real number. This means that the probable dissociation constants, for all reactions, can be 
directly computed from the stoichiometry number matrix and are suitable indicators of outcome for 
every reaction of the modelled biochemical network. Additionally, we find that the unambiguous 
annotation for a biochemical network will require a minimum number of iterations and will determine 
computational complexity.

The analysis of genome- or large-scale biochemical networks is an important consideration of the “omics”- revolu-
tion and a critical step in bridging the genotype and phenotype divide. Despite the availability and accessibility 
of advanced data analytical tools, true mechanistic insights into the manner in which a biochemical network 
accomplishes complex function has remained elusive. This is partly due to the absence of a consensus on the 
choice of parameters needed to characterize a biochemical network. Biochemical networks are a complex inter-
play of nodes (genes, proteins, metabolites) and stimuli that occur in the cytosol and/or its compartments and 
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are regulated by the laws of mass action, diffusion, feedback, partial reactions and thermodynamic  parameters1,2. 
The numerical characterization of a biochemical network is based on simple assumptions in an effort to ensure 
rigor, maintain computational efficiency and minimize storage. Although informative, insightful and robust, 
the results that emerge tend to depart significantly from the intracellular milieu and are likely to be of limited 
biomedical relevance.

The algorithms currently deployed to investigate large biochemical networks include one or more 
optimization(s) and the enumeration of elementary modes. The former includes flux balance analysis (FBA), 
dynamic FBA, flux-variable analysis (FVA), regulatory on–off minimization (ROOM) and minimization of 
metabolic adjustment (MOMA)1,3,4. These algorithms maximize or minimize the biomass of a metabolite of 
interest and can be used to investigate the effects of deletions and other perturbations on the flux of metabolites 
through a large  network1–5. The algorithms are computationally efficient and can be implemented with ease 
on an average desktop computer. However, deleting a node as in “gene deletion”-based analyses will alter the 
network irrevocably, a scenario which is unlikely to occur within the cell. Additionally, user-defined constraints 
for one or more parameters will introduce a bias into the computations and thence into the set of solutions 
further mitigating the impact of any analyses on true biochemical and physiological function. The enumeration 
of elementary flux modes (EFMs), elementary flux vectors (EFVs) and extreme pathway analysis (ExPas) is an 
alternative strategy to derive meaningful information from biochemical  networks2,6–9. This set of algorithms 
subsumes that a single stoichiometry matrix will lead to one of several states for the “entire”-network of reactions. 
In these studies a network-state is modelled as a mode (norm, sign) or vector (sign) of “all” rather than individual 
reactions. Another fundamental assumption is that the solutions of the linear system of equations are strictly 
 positive6. Here, too, since each reaction may have several outcomes, this constraint cannot be assumed de facto. 
The summations and subsequent selection are NP-hard and will result in voluminous run-time  data2. Despite 
these limitations the algorithms can identify metabolic hubs and smaller subsets of cooperating  reactions1,2,6.

An alternate class of algorithms is concerned with ascribing functionality to each node of a modelled bio-
chemical network by assigning weights to all possible outcomes. The resulting causal networks are probabilistic 
in construction and the conclusions drawn are  inferential10. The simple architecture notwithstanding, causal 
networks are able to explain the mechanism of a pharmacophore in the genesis of an adverse drug reaction or 
reciprocally, its efficacy along with insights into the traits that may be responsible for the same and are powerful 
aids in precision medicine and data-driven patient management  regimes11–16. Operations research, where deci-
sions need to made on the assignment, allocation and distribution of resources, often, in response to an event is 
another domain which has benefitted from causal networks and the evaluation of several “what if ”-scenarios17. 
Biologically relevant data mining for lists of potential genes, proteins and small molecules is yet another clini-
cally relevant application where causal networks have proven to be more than  useful18–21. The most important 
limitation is however, presence of- and access to- previous and existing information. This will dictate the weights 
for all possible outcomes and determine the overall directionality of the biochemical network. The availability 
of genome-scale data has permitted investigators to analyse biochemical networks for several organisms, from 
single cells and with varying time  points22–24.

The aforementioned studies (optimization, enumeration, causal networks) are exploratory, discovery-based 
and focussed on inferring parameters from the data itself, which is in most cases empirical. However, mixed-
case scenarios where investigators combine modelling with laboratory data have gained considerable traction in 
recent  years24–26. For example, there is an increased usage of laboratory assays that are based on computationally-
derived structure-based molecular  descriptors27–29. A generic strategy is to identify the core architecture of a 
modelled biochemical network and then generate several “synthetic”- or “redundant”-representatives which 
are progressively trimmed in an effort to reconstruct the originally identified  structure30. The parameters that 
are inferred by this process are then numerically- and/or statistically-validated. Although the utility of inferring 
network-specific parameters (clustering coefficient, path distance) and data-driven (clinical, epidemiological, 
pharmacophore) modelling is not debatable, portability/translatability and widespread usage remain unresolved 
 issues25–29. The inferred parameters, too, will be of limited utility in comprehending the underlying molecular 
biology and ascribing function to the modelled biochemical network. Selecting a parameter that is simultane-
ously biochemically and biophysically relevant, from raw datasets, is not trivial and remains a challenge. Certain 
parameters are truly empirical (reaction rate, rate constant, order of a reaction, turn over number) and are wholly 
dependent on the experimental design and setup. The inferences and thence the interpretation of these will be of 
limited clinical and biomedical  relevance22–26. Hybrid descriptors such as structurally derived factors for small 
molecules will combine data points (empirical, computational) with complex theoretical  frameworks27–29. It is 
also entirely possible to derive parameters such as dissociation constant, Michaelis–Menten constant and the 
Gibbs free energy change directly from  theory30–34.

Here, we develop and present an algorithm to compute probable dissociation constants for every reaction of a 
biochemical network. The algorithm will utilize both, biochemically relevant and theoretically sound constraints 
to compute these from a stoichiometry number matrix of a biochemical network. Results will be presented, 
initially for a single reaction and then extended to the whole network. These studies will be complemented with 
the computation and analysis of a well characterized biochemical network of aerobic glycolysis (AG). The manu-
script is organized into an introductory section where some of the principles and definitions that will be used by 
the algorithm will be defined and explained. A stepwise description of the algorithm along with the necessary 
mathematical analysis and the supporting computational studies will be presented as part of the “Results and 
discussion”. The manuscript concludes with a summary of the salient features, limitations and possible future 
studies which may utilize the probable dissociation constant to characterize a biochemical network. The proofs 
that underlie this mathematical formalism are described in detail and is presented as part of the Supplementary 
Material and includes definitions (D), lemmas (L), theorems (T) and corollaries (C) or are stated without a 
formal proof.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3507  | https://doi.org/10.1038/s41598-024-53231-9

www.nature.com/scientificreports/

Definitions, parameterization and biomedical relevance of a stoichiometry number 
matrix-based model for a biochemical network
Metabolism comprises reactions which are enzyme- and non-enzyme (association, disassociation, exchange)-
mediated. Whilst enzyme-mediated reactions involve the transformation of one or more substrates into one or 
more chemically distinct products, non-enzymatic reactions will result in complex formation or disassembly.

Terminology and concepts pertinent to reaction kinetics for use by a stoichiometry num-
ber-based model of a biochemical network
The formation of a complex is common to enzyme-mediated catalysis as well as non-catalytic cycles of associa-
tions and disassociations. We will utilize the term “reaction” throughout the manuscript to indicate this,

We extend this schema to the encompassing pathway and utilize the phrase “biochemical network” to rep-
resent a set of reactants/products that participate in a set of reactions (Def. (2)). We utilize the stoichiometry 
number for each reactant/product to indicate the presence of a change or lack thereof, that will be brought about 
by a reaction (Def. (3)). Consider the reaction (r) with j-indexed J-reactants and with rate (Rr) . We will define 
the rate constant (�r) as,

The intracellular environment is extremely complex and will support several forms of reactions between the 
reactants/products whilst precluding  others28,33–35. For example, the intracellular milieu or cytosol is regarded as 
non-Newtonian and imposes constraints on the type of reactions that may occur along with changes that effect 
reaction  rate34,35. These alterations in local viscosity can occur in response to acute stressors such as fluctuations 
in temperature and hydrogen ion concentration. The modifications have a biochemical (trehalose, glycogen) 
or biophysical (cytoskeleton) basis and may function to modulate diffusion and diffusion-mediated chemical 
reactions in vivo or in  silico34–37. The physiological manifestations of these will include reduced motion of mac-
romolecules, increased solubility and phagocyte movement towards a chemotactic and noxious  stimulus36–38. In 
order to retain this complexity we will use a reaction vector to model the contribution of each reactant/product. 
For the set of contributing j-indexed J-reactants or products,

Definition 5 (D5) The rate constant for a reaction (�r) is a strictly positive real scalar,

Although a reaction may have several outcomes, we will only consider the forward-, reverse- and equivalent-
outcomes in this study. Here, we define reaction “equivalence” as the uncertainty with regards to the preferred 
outcome for a reaction (Def. (6)). This may be due to the paucity of data on the reactants/products and/or the 
prevailing biophysical state of the intracellular environment where the reaction is expected to occur. In contrast, 
the reversibility of a reaction (forward, reverse) is a well characterized outcome.

The dissociation constant as the parameter of choice to investigate a biochemical network
Parameterizing a chemical reaction is non-trivial and is done empirically, derived theoretically or inferred from 
 data23,29,33,39. For a non-enzymatic reaction the dissociation (Kd) - and association (Ka)-constants are used to 
describe reversibility (forward, reverse) at or near  equilibrium4,5,33,40,

Molecular complex :=

{

Transformative ≡ Enzymemediated
Non− transformative

}

≡ "reaction" Def.(1)

a1A1 + a2A2 . . .aMAM
r
→ aM+1AM+1 + aM+2AM+2 . . .aM+NAM+N Reaction(1)

�r =
Rr

[A1]
lA1 .[A2]

lA2 ...[AM ]
lAM

(1)

where,
J = M + N; J ,M,N ∈ N (2)

−aj≤M := Stoichiometry number for reactantAj≤M Def.(3a)
aj>M := Stoichiometry number for productAj>M Def.(3b)
lAj≤M := Stoichiometry coefficient for a reactant

(

Aj

)

Def.(3c)
∈ R

ψr := Order for a reaction Def.(3d)

=
∑j=M

j=1 lAj≤M ∈ R (3)

r ∼ r (4)

def
=











a1

a2

...
aJ











⊂ Z
J Def.(4)

where j = 1, 2 . . . J = M+N

�r ∈ R ∩ (0,∞)
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The dissociation constant also allows us to describe a “non-productive” reaction which could occur when two 
or more reactants/products associate, form a complex and remain associated (Def. (7)). Unlike non-reacting reac-
tants/products, the reaction commences but does not terminate. This can happen when the product of an enzyme 
forms a covalent linkage with the active site residues and inactivates it  irreversibly41–43. A non-productive reaction 
is also observed when an inhibitor binds preferentially to the bound form of an enzyme, i.e., enzyme–substrate 
complex, rather than the free enzyme. This unique occurrence is referred to as “uncompetitive”-inhibition and 
is routinely observed in the tumor protein (TP)53-mediated inhibition of Glucose-6-phosphate dehydrogenase 
(G6PD; EC1.1.1.49 ) as a well-supported mechanism for tumor  suppression43. For a non-enzymatic reaction this 
implies an exceptionally high binding affinity between the reactants and/or products with the consequence that 
these become untenable as independent reactants/products41–43.

The dissociation constant is a non-negative real number (Kd ∈ R ∩ (0,∞) ) , can be empirically determined 
(surface plasma resonance, fluorescence, spectroscopic methods) or theoretically derived, and is a reliable index 
of reaction  outcome33,44–47,

Since the dissociation constant is a ratio, we can use it as a functional metric to compare the rates at which 
each reaction of a biochemical network takes place as well as the rates of the forward- and reverse-components 
of a reversible reaction,

The dissociation constant is versatile, informative and biochemically relevant and is therefore, the parameter 
of choice to investigate a biochemical network in our study. Here, we will derive a numerical measure directly 
from the stoichiometry number matrix of a biochemical network which we define as the “probable dissociation 
constant” (Def. (8)).

Stoichiometry number-based model of a biochemical network
We now model a biochemical network 

(

p
)

 as the sparse stoichiometry number matrix 
(

Sp
)

 of J× I dimensions 
(

Sp ⊂ Z
J×I

)

 . Briefly, each column of this matrix is an i-indexed 
(

i = 1, 2 . . . I
)

 collection of non-trivial reaction 
vectors 

(

r1r2 . . . rI ⊂ Z
J
)

 . Each row of this matrix is contributed to by j-indexed 
(

j = 1, 2 . . . J
)

m-stoichiometry 
numbers 

(

mji ∈ Z
)

 of J-reactants/products across all I,

Kd ≃
�rf
�rb

(5)

where,
Rrf = Rrb (6)
�rb �= 0 (7)

Forward : Kd > 1.0 (8)
Reverse : Kd ∈ (0, 1.0) (9)
Equivalent : Kd ≃ 1.0 (10)
Non− productive : Kd ≃ 0.0 (11)

Consider the forward reactions:

if

(

Kdi−1 > Kdi > Kdi+1

where Kdi−1, Kdi, Kdi+1 ∈ (1,∞)

)

then, Ri−1 > Ri > Ri+1 (12)

Consider the reverse reactions:

if

(

Kdi−1 < Kdi < Kdi+1

where Kdi−1, Kdi, Kdi+1 ∈ (0, 1)

)

then, Ri−1 > Ri > Ri+1 (13)

Consider the equivalent reactions:
if(Kdi−1 ≃ Kdi ≃ Kdi+1 ≃ 1.0)
then, Ri−1 ≃ Ri ≃ Ri+1 (14)
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The null space-generated subspace can be used to compute the probable dissociation con-
stant for a reaction
For a biochemical network 

(

p
)

 under the assumption of equilibrium, a subspace of the null space of a stoichi-
ometry number matrix 

(

V ⊆ N
(

Sp
))

 is defined by the null space spanning vectors and those that result from 
their combinatorial sums (Fig. 1),

Clearly, the cardinality of a null space-generated subspace will increase with the number of cycles of combina-
torial summations which we define as u-iterations (Def. (12)). The comprehensive subspace for the uth-iteration 
(Vu) is then defined by combinatorially summing the vectors from the (u− 1)th-iteration (Vu−1) . Using this 
notation we can easily see that,

Definition 13  A null space-generated subspace for the uth-iteration is comprehensive and defined as,

In order to partition Hu into subsets we will utilize the following definitions and notation,

p ∼ r1, r2 . . . ri=I
Def.(9)

∼







m11 · · · m
1I

...
. . .

...
mJ1 · · · m

JI






Def.(9a)

∼ S
�

p
�

⊂ Z
J×I Def.(9b)

where,
ri ∈ R ⊂ Z

J (15)

ri ∼











m1

m2

...
mJ











|mj ∈ Z (16)

ri �=
−→
0 (17)

R := Collection of subsets with non− trivial reaction vectors Def.(9c)

{

vk ∈ V⊂ R
I| V ⊆ N

(

Sp
)

; vk
T × Sp =

−→
0

T
}

Def.(10)

Sp ⊂ Z
J×I def

= Stoichiometry number matrix for a biochemical network (18)

N
(

Sp
) def

= Null space ofSp (19)

V := Subspace of N
(

Sp
)

with cardinality #V Def.(11)
k = 1, 2 . . . #V (20)

Vu=0 ∼ N
(

Sp
)

(21)

Vu
def
= Vu=0 ∪ (Vu−1) (22)
= N

(

Sp
)

∪ (Vu−1) (22.1)

= N
(

Sp
)

∪
(

Hu−1 ∪Hu−1 ∪ Lu−1

)

(22.2)
where,
N
(

Sp
)

= Null space spanning vectors for a given stoichiometry number matrix
Lu = Non empty set of trivial vectors Def.(13a)

def
= vu1 = vu2 · · · = vuK =

−→
0 |

{

vu1 , vu2 . . . , vuK
}

∈ Lu (23)
and L = #Lu (24)

Hu = Non empty set of unique vectors Def.(13b)
def
= vu1 �= vu2 · · · �= vuK |

{

vu1 , vu2 . . . , vuK
}

∈ Hu (25)
andH = #Hu (26)

Hu = Set of identical vectors Def.(13c)

whereH = #Hu (27)

Here,
u = 1, 2 . . . .U ∈ N (28)
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Lemma 1 (L1)  The cardinality of a subset of a finite set of identical vectors 
(

Axy ⊂ H

)

 is greater than unity,

Proof (L1)  By contradiction
Assume #  Axy = 1

LetAxy ⊂ Hu Def.(14)

where x = #H (29)
and y = (α, β, γ) (30)

If
(

α := Subset with all elements or with a single partition
)

Def.(14a)

then
(

Axα = Hu

)

(30.1)

If
(

β := Subset with a single element
)

Def.(14b)

then
(

Axβ
def
= {.}

)

(30.2)

If (γ := Subset withmore than one element) Def.(14c)

then
(

Axγ
def
= {., .}, {., ., .} . . .

)

(30.3)

#Axy > 1 (31)

Figure 1.  Outline of the algorithm to compute the probable dissociation constant and assign outcome to every 
reaction of a biochemical network. A biochemical network is modelled in terms of the stoichiometry numbers 
for a finite number of reactants/products and the accompanying reactions. A null space-generated subspace 
comprises only unique and non-trivial vectors which are iteratively, recursively and combinatorially summed. 
The reaction-specific sequence vector that is formed after a finite number of iterations will comprise terms 
that do not converge and are easily partitioned into distinct subsets. Statistical and mathematical descriptors 
for these terms (mean, standard deviation, greatest lower bound, least upper bound) are used to select and 
bin terms for all three predicted outcomes of a reaction. The formed reaction-specific outcome vector has a 
p1-norm which is the probable dissociation constant for a reaction. This process is repeated until every reaction 
of the modelled biochemical network can be unambiguously assigned. I , Number of reactions for a modelled 
biochemical network; J , Total number of reactants of modelled biochemical network; Sp , reaction-centric and 
user-defined stoichiometry number matrix for a biochemical network; Au ; u-iteration specific subspace of the 
null space of the stoichiometry number matrix for the modelled biochemical network; {Fi ,Bi , Ei} , Subsets to 
bin kth-term of an ith-reaction-specific sequence vector and (u = u > M)th-iteration; g(.) ; Map to assign the 
sum of Fi -, Bi - and Ei-subsets to a strictly positive real number of an ith-reaction-specific sequence vector and 
(u = u > M)th-iteration; T, C, D; theorem, corollary, definition;
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  �

Theorem 1 (T1) We can partition a finite set into finite non-overlapping subsets (�),

Interestingly, we can use T1 to compute the lower bounds for a biochemical network in terms of the reactants/
products (J) and reaction vectors 

(

I
)

 . Let us also assume that a single master reaction is an improbable event for a 
functional biochemical network given the complexity of the intracellular milieu,

We see that in order to remain biochemically relevant the modelled network must have at least,

The corresponding number of reaction vectors will be,

Methods
Computational tools to calculate the probable dissociation constant for every reaction of a 
biochemical network
The biochemical relevance and suitability of the probable dissociation constants for a biochemical network is 
illustrated by characterizing (constructed, presented, analysed) a biochemical network for AG. The R-package 
“ReDirection” will be used to assess the contribution of reduced- and oxidized-forms of Nicotinamide adenosine 
dinucleotide phosphate in regulating the activity of the Pyruvate dehydrogenase complex (PDC)48. “ReDirection” 
is freely available and can be accessed without a login id from the comprehensive R archive network (CRAN; 
https:// cran.r- proje ct. org/ packa ge= ReDir ection)48.

Briefly, “ReDirection” will check and modify, if necessary, the stoichiometry number matrix for a biochemi-
cal  network48. The matrix, along with a logical argument (TRUE, FALSE) which indicates whether the reactions 
are to be regarded as rows or columns, are entered as arguments for the function “calculate_reaction_vector”48. 
“ReDirection” will exclude all linear dependent vectors and then recheck the modified matrix for compliance with 
network-specific indices such as the minimum number of reactants/products, minimum number of reactions 
and a numerical difference of at least two in favour of the number of  reactions48. These are necessary arguments 
and “ReDirection” will not process the stoichiometry number matrix if these are violated. In case there are no 
deficiencies, “ReDirection” will compute the null space and generate subspaces serially by combinatorially sum-
ming all non-redundant and non-trivial  vectors48. “ReDirection” will continue these steps for a finite number 
of iterations until a subspace is found where the lower bounds for each sequence of row terms are unambiguous 
and well-defined. “ReDirection” will then check and bin every selected term to output-specific subsets (forward, 
reverse, equivalent), compute the linear sum for each subset, map these to strictly positive real numbers and 
thence populate a reaction-specific output  vector48. The p1-norm of the latter is denoted as the probable dissocia-
tion constant for a  reaction48. “ReDirection” will repeat this until every reaction is annotated  unambiguously48. 
The output will comprise a list of reactions with their computed probable dissociation constants and the predicted 
outcome (forward, reverse, equivalent)48

Computational studies to highlight and assess biological relevance of the probable dissocia-
tion constants
Although the probable dissociation constants that “ReDirection” computes is specific for a biochemical network, 
there are several generic metrics which can be derived such as the proportion and distribution of matched reactions 
(equivalent, non-equivalent). These can be used to indicate the flux of reactants/products in a particular direc-
tion within a network and compare the modelled biochemical network under variable intracellular conditions.

Aerobic glycolysis occurs when Glucose is converted to Lactate in the presence of non-limiting molecular 
 dioxygen49,50. Although purported initially as a plausible mechanism to explain the atypical metabolism of tumor-
ous cells, the phenomenon is routinely observed in rapidly proliferating non-tumorous (enterocytes, hematopoi-
etic stem cells), quiescent (fibroblasts) and endothelial cells of newly forming  vasculature50. AG offers plausible 
explanations for mechanisms for innate immune cell memory, angiogenesis and macrophage  polarization50–53. 
For example, a common observation in pro-inflammatory polarized macrophages is a break in Kreb’s cycle at 
the level of  citrate54–57. However, there is no clarity on the genesis and reversal of this outcome in the presence 
an intact and functioning Kreb’s cycle. Conversely, the roles of the bifunctional enzyme phosphofructokinase-2/
fructose-2, 6-bisphosphatase 3 (PFKFBP3) in the flux of pyruvate prior to its entry into the mitochondria have 
been implicated in several known AG-pathways58,59. Central to these hypotheses is a role for the PDC and its 

⇒ Axy ⊂ H (unique) (32)

� = 1+
∑t=#Hu−2

t=2

(

#Hu
t

)

(33)

if(� ≫ 1)

then

(

� ∼
∑t=J−2

t=2

(

J
t

)

def
= �

)

(34)

J ≥ 4 (35)

I ≥ � (36)
≥ 6 (37)

https://cran.r-project.org/package=ReDirection
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regulation. This is a multi-enzyme ( n = 3; Pyruvate dehydrogenase, EC1.2.4.1 ; Dihydrolipoyl transacetylase, 
EC2.3.1.12 ; Dihydrolipoyl dehydrogenase, EC1.8.1.4 ) and multi-coenzyme/cofactor ( n = 6 ; Magnesium, Thia-
mine pyrophosphate, lipoic acid, coenzyme-A (CoA), NAD+ , flavin adenosine dinucleotide 

(

FAD+
)

 ) which 
decarboxylates mitochondrial Pyruvate into Acetyl-CoA60,61. Regulation of the PDC is complex and occurs via 
the ratios of NAD(P)H/ NAD(P), ATP/ADP and Acetyl-CoA/CoA60,61.

Results and discussion
The steady-state for a system is described as the absence of apparent change in the numbers of the reactants/
products. For a biochemical network this is usually observed when the rates of formation and utilization of the 
reactants/products that comprise it are assumed to be equal. These conditions, when they occur within the cell 
are likely to be biochemical in origin and will include the effects of molecular redundancy (alternate splicing, 
duplicated genes, pseudogenes), feedback (positive, negative), compartmentalization and shared  reactants22,31.

Null space generated subspaces with reduced cardinality may improve time to complete 
annotation
Although the comprehensive null space-generated subspace for a modelled biochemical network is desirable, the 
vectors that comprise this may be trivial and redundant. This will lead to greater computational complexity and 
thence delay the time needed to completely annotate every reaction of a biochemical  network48. It is therefore, 
imperative that these vectors are identified and excluded. The resulting subspace (Au) is of reduced cardinality 
and is defined as,

The following corollaries about the cardinality of Au hold and are easily established.

Corollary 1 (C1) The expected cardinality of null space generated subspace for the matrix of stoichiometric numbers 
of the reactants/products of a biochemical network is always greater than the computed cardinality,

Corollary 2 (C2; without proof) The cardinality of an arbitrary and recursively generated subspace of the null space 
of the matrix of stoichiometry numbers of the reactants/products for a biochemical network is always greater than 
the nullity of the null space,

Corollary 3 (C3; without proof) The cardinality of recursively generated subspaces of the null space of the matrix 
of stoichiometric numbers of the reactants/products of a biochemical network forms a monotonically increasing 
sequence,

Since the time taken to annotate every reaction of a biochemical network will depend on the combinatorial 
sums of all non-redundant and non-trivial null space generated subspace vectors, the cardinality of this subspace, 
at each iteration is an important determinant of computational complexity.

Corollary 4 (C4) The computational complexity per iteration in exponential-time (Tu) is,

These results suggest that as the number of null space generated subspace vectors increases there will be an 
increase in the number of iterations needed to unambiguously annotate a reaction. This in turn will result in 
an increased cardinality of each null space generated subspace. A corresponding increase in run-time will then 
be needed to completely annotate every reaction of a biochemical  network48.

{

vuk ∈ Au ⊂ Vu⊂ R
I|Vu ⊆ N

(

Sp
)

, vuk
T × Sp =

−→
0

T
}

Def.(15)

Sp ⊂ Z
J×I = Stoichiometry number matrix for the biochemical network

N
(

Sp
)

= Null space of Sp
Vu = Subspace of N

(

Sp
)

with cardinality #Vu

Au = Null space generated subspace with reduced cardinality

vuk �=
−→
0

def
= Non− trivial vector ofAu (38)

vuk
def
= Unique and non− redundant vector ofAu (39)

k = 1, 2 . . . #cols(Au) (40)
u = 1, 2 . . .U

#Vu > #Au|u = 1, 2 . . .U (41)

#Au = #N
(

Sp
)

+
(

#Hu−1 + #Hu−1 + #Lu−1

)

[FromT1, C1 andDef .(13)] (42)

= #N
(

Sp
)

+
∑q=#Vu−1

q=2

(

#Vu−1
q

)

(42.1)

⇒ > #N
(

Sp
)

(43)

(#Au)u≥1|#A1 < #A2 . . . . < #AU|u = 1, 2 . . .U (44)

Tu ∈
(

0,O
(

2#Vu .#Vu

) ]

|u = 1, 2 . . .U (45)
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Rationale to utilize the row-sum of a null space-generated subspace as the domain to com-
pute the probable dissociation constant for a reaction
The vectors that comprise each null space-generated subspace represent a biochemical network at equilibrium 
where each row represents an ith-reaction and each numerical value belongs to R ∩ (−∞,∞) . However, since 
the dissociation constant is a non-negative real number we seek a map to the set of strictly positive real numbers 
such that in the absence of empirical data we can directly compute the probable dissociation constant from the 
null space of the stoichiometry number matrix for a biochemical network,

Let us partition the real part of the numerical values of any non-trivial and non-redundant null space gener-
ated subspace vector,

Combining these,

This means we can only map the following values unambiguously,

For vik ≈ 0 however, this mapping schema for an “equivalent”-reaction will not suffice since,

We can resolve this by treating each row of a null space generated subspace (A) as a finite series,

If we do this iteratively (u) , recursively and across all columns of a null space-generated subspace 
(k = 1, 2 . . .K) and for all reactions (∀i) , we obtain the following expression,

Theorem 2 (T2) The numerical values that comprise each row of a null space generated subspace (Au) with posi-
tive- and negative-terms can be rewritten as an alternating sequence,

Theorem 3 (T3) The sum for the finite series formed by each row of a null space generated subspace can be mapped 
from R ∩ (−∞,∞) to R ∩ (0,∞) for the ith-reaction of the uth-iteration,

g : (.) ∈ R ∩ (−∞,∞) �→ (.) ∈ R ∩ (0,∞) Def.(16)

vik
def
= vikf iff vik ∈ R ∩ (0,∞) (46)

vik
def
= vikb iff vik ∈ R ∩ (0,−∞) (47)

vik
def
= vike iff vik ≈ 0 (48)

where,
f := Index for a putative forward outcome predicting term (f ∈ N) Def.(16a)
b := Index for a putative reverse outcome predicting term (b ∈ N) Def.(16b)
e := Index for a putative equivalent outcome predicting term (e ∈ N) Def.(16c)

vik
def
= vikf ∨ vikb ∨ vike (49)
∈ A ⊂ R ∩ (−∞,∞) Def.(17)

g(vikf) ∈ R ∩ (1,∞) (50)
g(vikb) ∈ R ∩ (0, 1) (51)

vik ≈ 0
def
=

{

“Equivalent"(vike)
“Non-productive"

(52)

φ =
∑k=K

k=1 ak (53)

where,
ak ∈ rows(A) ⊂ R

1×K Def.(18)
K = #cols(A) (54)
k = 1, 2 . . .K (55)

φ ∼ φu ∼ φui (56)

=
∑k=K

k=1 auik (56.1)

(

auik

)

k=1,2...K
∼

(

(−1)k.auik

)

k=1,2...K
(57)

where,
auik ∈ rowi(Au) ⊂ R

1×K (58)

K = #cols(Au) (59)
k = 1, 2 . . .K (60)

i = 1, 2 . . . I (61)
u = 1, 2 . . .U ∈ N (62)
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We can now utilize φui to unambiguously compute the probable dissociation constant and assign an outcome 
(forward, reverse, equivalent) to the ith-reaction and thence to every reaction of a biochemical network.

Algorithm to compute the probable dissociation constant for every reaction of a biochemical 
network
An R-package implementation of the basic ideas that underline the presented algorithm is available for a user-
defined biochemical  network48. However, the mathematical basis for these findings and/or observations have 
not been addressed. Here, we rigorously investigate some of the several fundamental steps in the computation, 
usage and utility of the probable dissociation constant for every reaction of a biochemical network.

Schema to screen combinatorially summed vectors for a null space-generated subspace
For each u-iteration the null space-generated subspace will be screened for trivial and redundant vectors and 
subsequently excluded. The non-redundant and non-trivial vectors that remain will constitute the cardinality 
for the u-iteration specific null space-generated subspace (Step 1, Fig. 1). The following assumptions will be valid 
for the presented schema,

Rewriting the finite set of identical null space-generated subspace vectors for the uth-iteration 
(

Hu

)

 in terms 
of a finite collection of non-overlapping subsets (�),

Let us now define a representative vector from each subset as,

Since there can be one and only one such vector for each subset, we can write,

The finite series formed is then numerically equal to the number of subsets that Hu is partitioned into,

g : φui ∈ R ∩ (−∞,∞) �→ yui ∈ R ∩ (0,∞) (63)

where,

φui =
∑k=K

k=1 auik
auik ∈ rowi(Au) ⊂ R

1×K

and,
K = #cols(Au)
k = 1, 2 . . .K

i = 1, 2 . . . I
u = 1, 2 . . .U ∈ N















u = 1, 2 . . .U

i = 1, 2 . . . I
� ∈ N

#H = K















(64)

Hu =
{(

vu1 = vu2 · · · = vuA
)

,
(

vuA+1 = vuA+2 · · · = vuB
)

. . .
(

vuK−(K−1) , . . . vuK−1 , vuK
)}

(65)

where
{

vu1 , vu2 . . . , vuK
}

∈ Hu

A unique representative from each subset is,
(

∨k=A
k=1 vuk ,

∨k=B
k=A+1vuk . . .

∨k=K

k=K−(K−1)vuk

)

(66)

Wewill now reassign these vectors toHu,
(

∨k=A
k=1 vuk ,

∨k=B
k=A+1vuk . . .

∨k=K

k=K−(K−1)vuk

)

∈ Hu (67)

=

(

∨k=A
k=1 vuk ∈ Hu,

∨k=B
k=A+1vuk ∈ Hu . . .

∨k=K

k=K−(K−1)vuk ∈ Hu

)

(67.1)

and exclude these fromHu
(

∨k=A
k=1 vuk /∈ Hu,

∨k=B
k=A+1vuk /∈ Hu . . .

∨k=K

k=K−(K−1)vuk /∈ Hu

)

(68)

=

(

∨k=A
k=1 vuk ,

∨k=B
k=A+1vuk . . .

∨k=K

k=K−(K−1)vuk

)

/∈ Hu (68.1)

ζa ∼
∨k=A

k=1 vuk
ζb ∼

∨k=B
k=A+1vuk

...
...

ζK ∼
∨k=K

k=K−(K−1)vuk Def.(19)

ζ1 = ζ2 · · · = ζ� = 1 (69)
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These vectors will now be assigned to H which is the subset for all unique null space-generated subspace 
vectors. The incremented cardinality for the uth-iteration of this subset 

(

Hu

)

 is,

Reciprocally, Hu will be correspondingly deficient in these vectors and can be written as,

The reduced cardinality for the uth-iteration of Hu is,

Characterizing reaction-specific sequence vectors from the rows of selected null space-generated subspaces
We have already seen that after a finite number of iterations of combinatorial summing and vector exclusion, 
null space-generated subspaces with reduced cardinalities will result (Au). Since the terms from the ith-row 
when taken together, i.e., across all columns of the comprising vectors (cols(Au)) constitute the ith-reaction, 
we observe that #cols(Au)-terms can be partitioned into distinct subsets. We define u = M ∈ N formally as the 
lower bound for these iterations as (Step 3; Fig. 1).

The numerical values for M are easily computed from the limit of the fractional optimization of two decoupled 
real-valued functions when evaluated as a single ratio,

Since the algorithm is based on combinatorial summations, the constituent real-valued terms of a reaction-
specific sequence vector will be monotonic and their linear sum will be non-zero. This implies that convergence 
will occur very quickly (forward, reverse). If the linear sum of the terms of the reaction-specific sequence vector 
is zero, this will indicate that the sequence has an almost equal number of oppositely signed terms and will not 
converge (equivalent). However, here too, the use of fractional optimization, decoupling and a single ratio to 
minimize will result in convergence and the occurrence of a limit,

∑a=�
a=1 ζa = � (70)

#Hu = #Hu +
∑a=�

a=1 ζa (71)
= #Hu +� (71.1)

Hu =
(

vu1 = vu2 · · · = vuA−1

)

,
(

vuA+1 = vuA+2 · · · = vuB−1

)

. . .
(

vuK−(K−1) , . . . vuK−1

)

(72)

where,
{

vu1 , vu2 . . . , vuK−�

}

∈ Hu

#Hu = A− 1+ B− 1 . . . .K− 1 (73)
= (A+ B · · · +K)− (1+ 1 · · · + 1) (73.1)

= #Hu −
∑a=�

a=1 1a (73.2)

= #Hu −
∑a=�

a=1 ζa (73.3)
= #Hu −� (73.4)

u
def
= Miff







arg min(rowi(Au)) > 1
arg max(rowi(Au)) < −1
�

arg min(rowi(Au)), argmax(rowi(Au))
�

=
�

sgn(+), sgn(−)
�







∀i (74)

where,
rowi(Au) ⊂ R

1×K

i = 1, 2 . . . I
K = #cols(Au)

minimize
x

(

A(x)
B(x)

)

≥ 0 (75)

where
A(x) : RK �→ R+ ∩ {0} (76)
B(x) : RK �→ R+ ∩ {0} (77)
K = #cols(Au)
u = 1, 2 . . .U
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Now that we have established the minimum number of iterations, we will proceed to define, populate and 
process the reaction-specific sequence vector for every reaction of the modelled biochemical network. We will 
use a simplified notation hereafter without loss of generality to indicate and annotate,

We denote an ith-reaction-specific sequence vector sequence 
(

ai
T
)

 with real values which for the uth-iteration 
whose sum is φi in accordance with T2 (Step 4; Fig. 1),

Once the ith-reaction specific sequence vector is defined we will characterize it using standard statistical 
descriptors (Step 5; Fig. 1),

At u = M :

if
�

φui ∈ (0,+∞)
�

then

�

lim
x→(+)∞

�

1+ eargmin(rowi(Au))

eφui

�

= 1

�

(78)

OR

if
�

φui ∈ (−∞, 0)
�

then

�

lim
x→(−)∞

�

1+ eφui

eargmax(rowi(Au))

�

= 1

�

(79)

OR

if
�

φui ≈ 0
�

then







�

lim
x→(+)∞

�

1+ eargmin(rowi(Au))

eφui

�

�

∨

�

lim
x→(−)∞

�

1+ eφui

eargmax(rowi(Au))

�

�

= (1) ∨ (1)
= 1






(80)

where

φui =
�k=K

k=1 auik
auik ∈ rowi(Au) ⊂ R

1×K

K = #cols(Au)
k = 1, 2 . . .K

i = 1, 2 . . . I
u = 1, 2 . . .U ∈ N

(.)ui ∼ (.)i (81)

where,
u = 1, 2 . . .U > M

i = 1, 2 . . . I

rowi(Au) ∼ ai
T (82)

=
[

ai1ai2 . . . aiK
]T

(82.1)

�ai
T�1 = φi (83)

where,

aik ∈ ai
T ∼ rowi(Au) ⊂ R

1×K

i = 1, 2 . . . I
K = #cols(Au)
k = 1, 2 . . .K
u = 1, 2 . . .U > M
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Rule-based population of the outcome-specific subsets for every reaction of a biochemical network
We will first define the criteria to populate the Fi - and Bi-subsets from the reaction-specific sequence vector for 
the ith-reaction of a (u = U > M)th-iteration,

Corollary 5 (C5) If the cardinality of the reaction-specific Fi- and Bi-subsets is finite we can identify a unique subset 
(Ei) with terms that form an alternating sequence after u = U > M-iterations,

Corollary 6 (C6, without proof) The sum of the terms of the subset that corresponds to the “equivalent”-outcome is 
numerically equal to zero after a large u = U > M,

µ
(

ai
T
)

:= Arithmetic mean for the #Au − terms of ai
T Def.(20)

=
φi

#cols(Au)
(84)

=
�ai

T�1
#cols(Au)

(84.1)

σ
(

ai
T
)

:= Standard deviation for the #Au − terms of ai
T Def.(21)

=

√

(

aik−µ(aiT)
)2

#cols(Au)
(85)

where,

aik ∈ ai
T ∈ rowi(Au) ⊂ R

1×K

K = #cols(Au)

and,
k = 1, 2 . . .K
u = 1, 2 . . .U > M

i = 1, 2 . . . I

{

aik = aif ∈ Fi iff aik > µ
(

ai
T
)

+ 2.σ
(

ai
T
)

and aik > 0

}

Def.(22)
{

aik = aib ∈ Bi iff
∣

∣aik
∣

∣ >
∣

∣µ
(

ai
T
)

+ 2.σ
(

ai
T
)∣

∣

and aik < 0

}

Def.(23)

where,

aik ∈ ai
T ∈ rowi(Au) ⊂ R

1×K

µ
(

ai
T
) def
= Arithmetic mean for the #Au − terms of ai

T

σ
(

ai
T
) def
= Standard deviation for the #Au − terms of ai

T

K = #cols(Au)

and,
k = 1, 2 . . .K
f, g = 1, 2 . . . F, G ∈ N (86)

i = 1, 2 . . . I
u = 1, 2 . . .U > M

Ei =
(

aie
)

e=1,2...#Ei
(87)

=
(

(−1)e.aie
)

e=1,2...#Ei
(87.1)

=
(

(−1)2e.ai2e + (−1)2e−1.ai2e−1

)

e=1,2...#Fi+#Bi
(87.2)

where,

(−1)2e.ai2e = aif > 0 (87.3)

(−1)2e−1.ai2e−1 = aib < 0 (87.4)
{#Fi, #Bi} > 0 (87.5)

and,
e, f, g = 1, 2 . . .E, F, G ∈ N (87.6)

i = 1, 2 . . . I
u = 1, 2 . . .U > M
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On the basis of these criteria we can populate Ei for the ith-reaction of the (u = U > M)th-iteration,

Mapping the outcome-specific sum to the real-valued open interval R ∩ (0,∞)
We have already identified a generic mapping schema where the lower- and upper-bounds of the reaction-specific 
sequence vector that comprise the real-valued terms of the null space generated subspace can be mapped to the 
open interval R ∩ (0,∞) (T2, T3; C5, C6) (Steps 6–9; Fig. 1). We will now define these maps formally for each 
outcome-specific subset,

The p1-norm of the reaction-specific outcome-vector is the probable dissociation constant for that reaction
Since every reaction can have these possible outcomes, we can define for the ith-reaction of the uth-iteration 
where u = U > M , a reaction-specific outcome vector,

The p1-norm describes the final outcome of the ith-reaction after a finite number of u = U > M-iterations 
(Step 10; Fig. 1),

φiE = φiF + (−1).φiB (88)
= φe + (−1).φe[FromT2, T3, C5] (88.1)
≈ 0 (88.2)

where for a large u = U > M
#Fi ≈ #Bi (89)
#Ei = #Fi + #Bi (90)

and,
e, f, g = 1, 2 . . .E, F, G ∈ N

i = 1, 2 . . . I

aie ∼ (−1)e.aie =

{

(−1)2e.ai2e = aif
(−1)2e−1.ai2e−1 = aib

}

∈ Ei Def.(24)

where,
e, f, g = 1, 2 . . .E, F, G ∈ N

i = 1, 2 . . . I

Forward :

a) For the non empty subsetFi with cardinality #Fi and sumφiF ,
g : φiF ∈ R ∩ (1,∞) �→ yiF ∈ R ∩ (1,∞)∀u = U > M (91)

where,
yiF = φiF (92)

b) For the non empty subsets (Fi,Bi)with cardinalities (#Fi, #Bi)and sums
(

φiF ,φiB

)

,
(

g : φiF ∈ R ∩ (1,∞)+ g : φiB ∈ R ∩ (−∞,−1)
)

�→ yiF ∈ R ∩ (1,∞)∀u = U > M (93)
iff,
#Fi ≶ #Bi (94)
∣

∣φiF + (−1).φiB

∣

∣ ≫ 0 (95)

where,

yiF = φiF + eφiB (96)

Reverse :
For the subsetBwith cardinality #Bi and sumφiB ,
g : φiB ∈ R ∩ (−∞,−1) �→ yiB ∈ R ∩ (0, 1)∀u = U > M (97)

where,

yiB = eφiB (98)

Equivalent :
For the non empty subset E with cardinality #Ei and sumφiE ,
g : φiE ∈ R ∩ {0} �→ yiE ∈ R ∩ {1}∀u = U > M (99)
iff,
#Fi ≈ #Bi (99.1)
φiE ≈ 0 (99.2)

where,

yiE = eφiE (100)

g(φi) ∈ ≀i
T =

[

g
(

φiF

)

g
(

φiB

)

g
(

φiE

)]T
⊂ R

1×3
+ (101)
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We can now summarize these assertions and unambiguously annotate every reaction of a biochemical net-
work as,

We can easily see that the probable dissociation constant (ηi) for the ith-reaction of the modelled biochemical 
network can be equated to the true dissociation constant (Kdi),

The algorithm is then iteratively applied to all other rows of a null space-generated subspace, i.e., reactions 
of the modelled biochemical network 

(

i = 1, 2 . . . I
)

 and the probable dissociation constants are computed for 
∀i . If there is ambiguity in the annotation, the combinatorial summation and subsequent steps are recursively 
 repeated48. Complete annotation for every reaction of a biochemical network will occur if and only if the annota-
tion is unambiguous. A biochemical network is only regarded as being completely annotated if and only if every 
reaction that comprises the network is annotated  unambiguously48.

Biochemical relevance and suitability of the probable dissociation constant to characterize a 
biochemical network of aerobic glycolysis
The biochemical network for AG 

(

IAG = 20;η1 − η20

)

 comprises single ( IAG = 14 )- and multi ( IAG = 5)-step 
reactions in the cytosolic (c) and mitochondrial (m) compartments (Fig. 2) (Supplementary Text 2). Here, the 
multi-step reactions include the hexose monophosphate shunt (r2, r4) , glycolysis (r5) , Kreb’s tricarboxylic acid 
(TCA; r12 ), oxaloacetate-malate shuttle (r16) and Cori’s cycle (r20) . The modelled biochemical network also 
includes transport reactions for Pyruvate (r8) , Citrate (r14) and mitochondrial Phosphoenolpyruvate (r17) . The 
computed probable dissociation constants favour the export of oxaloacetate into the cytosol directly or through 
phosphophenolpyruvate ({η10, η13, η16, η17} > 40) thereby indicating a flux towards gluconeogenesis. The steps 
towards glucose 6-phosphate are supported by observing the probable dissociation constants for the following 
conversions: phosphoenolpyruvate → glyceraldehyde 3-phosphate (η5 ≈ 0.017) and glyceraldehyde 3-phosphate 
→ glucose 6-phosphate (η3 ≈ 0.03) (Fig. 2). We can easily infer from the reverse reaction pyruvate → acetyly-
CoA (η9 ≈ 0.03) that the TCA-cycle is interrupted (Fig. 2). These findings suggest that contrary to available 
literature, the TCA-cycle is predisposed to being perturbed and its restoration or “intactness” is actively main-
tained for metabolic homeostasis or oxidative phosphorylation. These observations are perfectly logical given 
that the TCA-cycle is anaplerotic with several of its intermediates participating in collateral pathways. For AG 
to occur it is necessary that the TCA-cycle along with oxidative phosphorylation is interrupted in favour of an 
increased cell mass via the hexose monophosphate shunt pathway (DNA/RNA synthesis, NADPH) and fatty 
acid synthesis via acetyl-CoA (Fig. 2).

These data also offer several interesting insights into the metabolic crosstalk that may occur within cells when 
metabolizing Glucose to Lactate in the presence of adequate molecular dioxygen (Fig. 2). There is a significantly 
larger fraction 

(

85%; IAG = 17
)

 of non-equivalent reactions with forward 
(

35%; IAG = 7
)

 - and reverse 
(

50%; IAG = 10
)

-reactions as compared to the equivalent 
(

15%; IAG = 3
)

 (Fig. 2). This suggests that the prevail-
ing biochemical and physicochemical conditions where AG is expected to occur is, in fact an important deter-
minant of whether AG occurs at all. Conversely, the paucity of equivalent reactions in the biochemical network 
for AG suggests lack of regulatory reactions. The ratio of NAD(P)H to NAD(P)+ along with Acetyl-CoA to CoA 
and ATP to ADP is an important regulator of the Pyruvate dehydrogenase complex (PDC) and is likely a major 
determinant for the metabolic shift observed to implement reversible AG.

Limitations of the presented algorithm and relevance of fractional derivatives in modelling 
and analysing complex biochemical systems
The biomedical relevance in computing the probable dissociation constant notwithstanding, the presented algo-
rithm is dependent on the stoichiometry or integer numbers to model change to the molecular species that 
comprise the modelled biochemical network. This effect is partially offset by computing the null space, although 
the assumption that the modelled biochemical network is at equilibrium is yet another presumption. A further 
limitation of the presented algorithm is that it is enumeration-based and will therefore, be intractable for large 
biochemical networks. Furthermore, since the computations are entirely dependent on the null space, the initial 
nullity is also likely to effect the real time needed to annotate every reaction of a modelled biochemical network. 
This will mean that for smaller networks too, the time to complete annotation may also not be  possible48.

The probable dissociation constant is a numerical measure that is computed from the null space for a stoi-
chiometry number matrix model of a biochemical network. However, most biochemical systems operate under 
non-equilibrium conditions. In fact, the true dissociation constant for a reaction is an empirical measure and 
is the ratio between the exponent (stoichiometry coefficients) forms for each reactant in a perfectly reversible 
reaction. The advent of large data warrants analytical approaches that depart significantly from previous methods 

�oi
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(
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)
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(

φiB

)
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φiE
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(102)
= yiF + yiB + yiE (102.1)
def
= ηi ∈ R ∩ (0,∞) (103)

Forward ηi > 1 (104)
Reverse ηi ∈ (0, 1) (105)
Equivalent ηi ≃ 1.0 (106)

ηi ∼ Kdi (107)
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in an effort to optimize computational resources whilst delivering meaningful information about the network. 
The use of fractional derivatives has gained traction over the last several years in an effort to impute missing data, 
improve convergence times and model complex  systems62–66. For example, fractional derivatives are being used 
to improve convergence in the presence of multiple local optima and model and/or analyse the complex behav-
iour of fluids, biomolecules and biochemical systems such as anomalous diffusion in the cytoplasm and across 
membranes and even telomeres in the  nucleoplasm62–66. All these studies have reported significant improvements 
in predicting an outcome, goodness-of-fit studies and time to convergence.

In general, a fractional derivative of α-order can be approximated with the gamma function using the Rie-
mann–Liouville (RL), Caputo (CAP) or the Grunwald–Letnikov (GL)  methods67–70. Consider the Caputo frac-
tional derivative,

In the absence of empirical data investigating a biochemical network is challenging. One strategy for 
interrogating a biochemical network at non-equilibrium or near steady-state conditions is approximating 
the dissociation constant for a reaction. This equation is fundamental to biochemical analysis and involves a 

Dαxβ =

(

Ŵ(β+1)
Ŵ(β−α+1)

)

.xβ−α (108)

where,
β ∈ Z+ ∪ {0} (109)
α ∈ (β − 1,β) (110)
α ∈ R+ (111)

Figure 2.  Computational studies with “ReDirection” to demonstrate suitability and biochemical relevance of 
the probable dissociation constant in characterizing a biochemical network for aerobic glycolysis. The 
dissociation constant for a reaction is an empirically derived parameter and can reveal valuable information 
such as the rate and rate constant for a reaction. Theoretically-derived approximations are usually based on 
user-defined bounds and/or pre-selecting strictly positive null space spanning vectors. Although the 
computations are rendered more feasible with these assumptions, the biomedical relevance of the data generated 
with these numeric constraints is likely to be of limited relevance. The algorithm presented computes the 
probable dissociation constant from first principles and with biochemically relevant constraints. A biochemical 
network of aerobic glycolysis is modelled and defined in terms of a sparse matrix of stoichiometric numbers of 
its reactants/products (J = 17) and reactions 

(

I = 20

)

 . “ReDirection” checks this user-defined matrix and 
computes the null space, utilizes mathematically sound (tests of convergence, descriptive statistics, linear maps) 
constraints to compute the probable dissociation constant and thereby assign a dominant direction to every 
reaction of the modelled biochemical network of aerobic glycolysis. I , Total number of reactions of modelled 
biochemical network; J , Total number of reactants of modelled biochemical network; Sp , reaction-centric and 
user-defined stoichiometry number matrix of a biochemical network for aerobic glycolysis; m, c; mitochondrial 
and cytosolic components of a reactant/product; ηi , probable dissociation constant for the ith-reaction of a 
biochemical network with forward (F) , reverse (B) , or equivalent (E) outcomes.
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phenomenological approximation of the integer values for the stoichiometry numbers of the reactants with an 
expression that involves real number exponents for each reactant of a fully reversible reaction. In accordance 
with Reaction 1 this is written as,

We can then proceed to compute the fractional gradient descent, post hoc, to a preliminary imputation step to 
estimate missing or latent data  points62,63,69,70. We can combine a small learning rate with a constant (stochastic) 
or mini-batch update protocol concomitantly with several novel algorithmic approaches to accomplish these 
 steps62,63,69,70,

The imputed values computed earlier will represent an initial approximation to the original stoichiometry 
numbers matrix for a biochemical network and can be refined iteratively,

The computed numerical values can be used to assess the contribution of each molecular species to a reac-
tion vector and are easily mapped to the exponents for each reactant. This can then be directly included in the 
formula to estimate the dissociation constant for a reaction at a particular step. Since this is a strictly positive 
real number we can use this metric to check whether each reaction vector converges to the expected outcome,

Kdi =

∏j=M
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γ := Learning rate
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Biomedical relevance of the presented algorithm to the study of biochemical networks
The dissociation constant for a reaction is a fundamental parameter in biochemical analysis and is computed 
predominantly from empirical data. However, this information is sparse and unavailable for several biochemical 
reactions of interest. For those reactions that laboratory data is available, the absence of corroborating in vivo 
details will render these less likely to have clinical- or biomedical-relevance. Additionally, biochemical assays 
comprise single or at most coupled reactions which further limits the utility of this information since complex 
biochemical function is brought about by biochemical networks. Although several algorithms utilize the null 
space, these are directed towards comprehending possible stable states for a modelled biochemical network. 
Parameter selection is also left to the discretion of the user further limiting the portability of these studies.

Unlike these investigations the probable dissociation constants are computed for every reaction and directly 
from a null space-generated subspace of the stoichiometry number matrix for a biochemical network. The 
algorithm concentrates on using combinatorial summations of unique and non-trivial null space spanning 
vectors to estimate the probable dissociation constant for every reaction along with mathematically rigorous 
and statistically relevant term-selection. A significant contribution of this algorithm is that it does not exclude 
numerical values and in doing so ensures that the computations are all encompassing. The computation of the 
probable dissociation constants are not only user-independent and computed from first principles, but may 
also be biochemically relevant. Since the mapping of the probable dissociation constants to the positive real 
number space is in accordance with established biochemical paradigms, the information gleaned can easily 
be incorporated into simulation studies for a biochemical network and used to compute the trajectories for a 
reactant/product38,40. Furthermore, the distribution of the probable dissociation constants across a biochemical 
network can offer plausible explanations into metabolite flux and usage. These testable hypotheses may be cor-
roborated with detailed site-directed mutagenesis experiments and labelling studies among several  others44–47. 
The probable dissociation constants can also be used to compare individual biochemical reactions of a network. 
These investigations may also be complemented by detailed theoretical studies such as phylogenetic analysis for 
enzyme-mediated reactions to ascertain the isoforms that may be deployed by a biochemical network. It may also 
be possible to perturb these networks and investigate the distribution for each pair of reactions of a biochemical 
network, i.e., before and after a stimulus.

Conclusions
The probable disassociation constant for a biochemical reaction is a numerical measure which can be computed 
directly from a null space-generated subspace of the stoichiometry number matrix for a biochemical network. 
Here, we present a mathematically rigorous algorithm to compute the probable dissociation constant for a 
reaction and thence for every reaction of a biochemical network. Each step of the algorithm is outlined and 
supported by the necessary mathematical formalism that is needed to comprehend and utilize this framework. 
The theoretical assertions presented in the main text are supported by formal proofs wherever applicable and 
are available and accessible as Supplementary Material. The biological relevance of this work is illustrated with 
computational studies and analyses of the probable dissociation constants for a well characterized biochemical 
network. The data generated is in accordance with established kinetic paradigms and is therefore, a suitable index 
of biochemical function and can be used to parameterize and study a biochemical network. These data are also 
amenable to detailed analyses and can be used to test various hypotheses for both, baseline- and perturbed-con-
ditions of different cell types and across taxa. Additionally, the resulting data may offer valuable insights into the 
physiological and thence the pathological basis of diseases such as malignancies, altered immune response, etc.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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