
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports

Research on multi‑dimensional
reconstruction mechanism of cloud
native full link in the metaverse
scenario
Shuo Sheng

Recently, the Microservices whole link whole life cycle optimization framework has been a research
hotspot in the academic and engineering fields, especially how to encapsulate the component security
mechanism and conduct high concurrency testing based on the existing active framework. The whole
link delay, load, and cost have always been the key optimization goals of Microservices splitting and
deployment logic. Based on this, this paper proposes a multi‑objective optimization Microservices
framework that takes into account the security mechanism, Define the fitness function, define
the upper and lower limits, and perform multi‑dimensional constraints to filter for global and local
optima. At the same time, reconstruct the circuit breaker current limiting mechanism, dynamically
detect protocol parameters, and perceive the logical relationship of heartbeat status in real‑time.
Experimental results have shown that this innovative framework can solve scenarios such as high
concurrency, high reliability, and high availability Performance bottleneck, business degradation,
especially in financial and securities scenarios.

With the popularity of Microservices, every Internet company has numerous services of all sizes in the back-
ground, and there are countless invocation relationships between services. To ensure the maturity and stability
of the entire Microservices system, it is necessary to ensure the maturity of each Microservices. But how to
define the maturity of a service? What latitude should we consider? What are the common problems in various
latitudes? How to optimize?

With the development of mobile Internet and Internet plus, the original SOA architecture has encountered
four problems: ① lack of effective service governance, mixed service assets, and no effective service management
and control means; ② The business support response is slow, and the system is too big to fail, unable to achieve
real-time updates and modular release; ③ Poor system availability, unable to achieve 7 × 24 h uninterrupted
service; ④ Innovative business is difficult to support, especially innovative business with Internet characteristics.
Based on this, developers propose an SOA architecture based on Microservices with the starting point of archi-
tecture optimization1–6; Its core concept is to decompose complex application systems into multiple services in
the form of independent business units, each of which can adopt different implementation technologies and be
independently designed, developed, and deployed in a lightweight and more flexible mode, running in independ-
ent processes to form highly cohesive autonomous units.

Specifically, SOA divides the system into different services, uses interfaces for data interaction, and services
are interdependent and effectively integrated to achieve the overall function of the system7,8. In terms of archi-
tecture, the Microservices architecture is an improvement based on SOA architecture, and incorporates the idea
of componentization and domain modeling. First, the system is divided into multiple Microservices, which are
deployed independently in a Loose coupling manner; Secondly, each Microservices only needs to complete its
own tasks with high quality, and each task represents a fine-grained business capability; As a result, various
businesses have been completely componentized and service-oriented9–12; Finally, modules that provide domain
service capabilities realize service composition and assembly in the underlying Microservices architecture. As
shown in Fig. 2a, the overall architecture puts all software functions in a process, and multiple servers jointly
support the running of computing tasks, and finally returns the running results to the user; The Microservices
architecture (Fig. 2b) decomposes the overall function of the software into multiple services supported by dif-
ferent types of servers; Then, the data is fed back to the database, and users can obtain data from the database,

OPEN

Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai,
China. email: positive_y@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-48724-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

which not only speeds up the overall response speed of the system, but also meets the business needs of front
and back end separation under the Internet environment. It can be seen that the advantages of the Microservices
 architecture10 are mainly reflected in: distributed (physical deployment, service deployment, data storage), high
availability (distributed architecture, clustered deployment, automatic service registration) Scalable (on-demand
resource allocation), intelligent operation and maintenance, and other aspects.

With the increasing expansion and complexity of software system functions, the SOA architecture based on
Microservices has begun to rise. Specifically, Microservices supports the rapid response and personalization of
business in the foreground. It uses service-oriented development SOD (service-oriented development), which
is characterized by rapid development, timely response, easy implementation, etc.13; The ESB service bus, as the
back-end, supports the integration of various systems, technologies and platforms, while the service-oriented
infrastructure (SOI)14–16 has the characteristics of stability and high integration. The Microservices technology
and ESB technology complement each other and play different core roles in the SOA architecture to achieve the
self-service effect of software systems.

This article introduces a model used by the technical product teams of mainstream frontline large factories
in the financial field to measure service maturity, and evaluates multiple backend services based on this model.
It summarizes some common low sub items and organizes relevant optimization solutions for the low sub items.

Optimization model
Service maturity model
In Fig. 1, in order to quantify the maturity of services, this study needs to evaluate services from multiple dimen-
sions. Each service iterates continuously with the requirements, and each iteration cycle needs to go through the
following three stages: development testing, operation and maintenance online, and online operation. At each
stage, a series of measures are needed to ensure the final maturity and reliability of the service. This study focuses
on each stage and identifies the indicators that need to be addressed to measure the overall quality of that stage.
This study comprehensively rated the above three stages and graded service maturity based on the ratings. (1–5
points are classified as admission level, 6–7 points are classified as service level, and 8–10 points are classified
as maturity level.) Through such a service maturity model, this study can intuitively evaluate the maturity of a
service using quantitative indicators and identify areas for improvement.

Low item sorting
Based on the service maturity model, this study evaluated multiple backend services and found that some
indicator items generally scored lower in each service. These indicators include: development testing: code

Figure 1. Full-link microservice security link topology.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

specification, unit testing, stress testing, interface testing; In terms of operation and maintenance online: grayscale
online, online rollback; In terms of online availability: system protection, data backup, alarm processing, and
emergency plans. Therefore, this study prioritized the optimization schemes for these low sub items, hoping to
improve the maturity of services and elevate the services of this study to a mature level through the optimiza-
tion of low sub items.

Low sub item optimization plan
In Fig. 2a,b, The services in this study are mainly developed based on the Java language, mainly using virtual
machine deployment and a small amount of container deployment. So the optimization plan below mainly
revolves around the current service status of this study.

Development testing
Online bugs are often introduced by developing new requirements. If problems are discovered as much as pos-
sible during the development and testing phase, improving code quality can minimize the impact of the problem.
Here are some common measures and means during the development and testing phase:

Code specification
Programming style. Collaborating with GitLab CI and Sonar inspections, it is possible to conduct code specifica-
tion checks on each submission and present them visually in the form of reports.

Unit testing
In Fig. 2a,b, Unit testing is located at the bottom of the testing pyramid. Fast running efficiency, typically com-
pleted test cases run for no more than 10 min, and can be integrated into the CI process to quickly provide
feedback on issues. Low maintenance costs, unit testing can detect problems during the development phase, and

Figure 2. (a) Full link testing core routing. (b) Full Link Metaverse Cloud Native Data Business Logic Flow
View.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

repair costs are low. The longer the feedback time for testing the pyramid, the higher the cost of implementation.
Therefore, it is recommended to increase the coverage of unit testing.

The most commonly used testing framework for Java is Junit. In addition, in conjunction with the Mock
testing library Mockito and the testing coverage tool Jacobo, a complete set of unit testing tools is formed. Jacco
plugins can be configured in both IDEA and SonarQube to visually display the coverage of unit testing.

In the process of promoting unit testing, the common problems encountered in this study are: supplementing
unit testing for projects is time-consuming and laborious, and how to control the testing coverage of new code?

In Fig. 3, the solution of this study is to prioritize supplementing unit testing for important code (such as
public libraries and tool classes) with existing code. Indicators for increasing Code coverage of new code (e.g.,
set the test coverage of new code to be no less than 90%); As new code is added and old code is modified, the
overall testing coverage of the project will gradually increase. Add code testing coverage statistics: Using the
diff cover tool, you can calculate the testing coverage of the current branch’s modified code by analyzing branch
code differences and Jacob test reports.

Figure 2. (continued)

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

Unit testing

(1) Why do I need to do stress testing Through stress testing, this study was able to: identify performance
bottlenecks; Estimate resource usage; Provide reference for current limiting configuration; Identify issues
introduced by new requirements.

(2) What functions should stress testing tools have Common stress testing tools include JMeter and others.
This study uses the LoadMaker cloud pressure testing system provided by mainstream cloud platforms in
the financial field of first tier large enterprises, which has the following characteristics: multiple pressure
clusters, and the pressure can reach high levels; Create and save pressure testing scenarios, repeat execu-
tion; Provide pressure test reports: QPS, response time, error rate, and other data; Meanwhile, in order to
ensure that pressure testing does not affect the actual traffic of online users, this study constructed a separate
pressure testing resource pool. When pressure testing is required, selecting machines and pressure testing
modules in the resource pool can automatically build a pressure testing environment.

(3) When is pressure testing required? Routine pressure testing: Conduct routine pressure testing on key pro-
jects during the grayscale period of the version; Pre launch pressure testing for new projects/interfaces: Pre
launch pressure testing for new projects to guide capacity estimation and current limiting configuration.

Interface dial test
In Fig. 4, for backend interface services, this study is more concerned about whether the data returned by
the online interface is correct and whether the new code has affected the existing logic? Interface testing can
effectively cover the above two issues. On the one hand, it can be used for verifying the data returned by online
interfaces and detecting interface anomalies in real-time. On the other hand, it can be used to automate the

Figure 3. Optimization of core branch business timing.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

API testing, cooperate with the online process, find out whether the new code is introduced, and terminate the
online operation in a timely manner. An interface testing system should have the following features: support
verifying the interface return results; Complex verification supports writing scripts; Multiple test points can be
set to simulate formal user request scenarios; Support for alarms; Detailed test reports; Get through with the
online process, and support automated API testing after grayscale.

Operation and maintenance launch
Grayscale online mechanism
Passing code testing in a testing environment does not guarantee that the code has no problems at all, and there
is still a possibility of undetected problems caused by testing omissions or environmental differences. If there
is no grayscale online mechanism, these potential issues can directly go online, which may have catastrophic
consequences for the online system. The grayscale launch needs to be accompanied by grayscale checks to ensure
the safety of this launch. The inspection methods used in this study include: automatic interface detection for
grayscale machines after grayscale is brought online; Compare the monitoring indicators of grayscale machines
with those of online machines; Acceptance of grayscale environment testing function.

Online rollback
If an online problem occurs due to the launch of new code, the first thing to do should be a rollback operation,
rather than analyzing the problem and fixing the code launch. The rollback operation needs to achieve the fol-
lowing points as much as possible: the rollback speed is fast, and if it is necessary to reverse the code, recompile
and package it, and upload it to the server, the entire process will be relatively long, and the fault recovery time

Figure 4. Full link security performance testing.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

will also be relatively long; Rollback is complete, and some code and configuration files are dependent. If only the
code is rolled back, it may cause exceptions after startup; Rollback capability requires architectural consideration
to avoid situations where rollback is not possible, such as data writing after going live, which is incompatible
with the rolled back code.

This study adopts the RPM packaging method for online and rollback. Package all the content (code and
configuration) deployed at once in the form of RPM. During deployment, the server retains the historical ver-
sion of the RPM package. When rollback is required, simply execute the Job to install the historical version of
the RPM package. If the service is deployed using a container, it will be easier to roll back by simply starting the
mirror of the historical version.

Online availability
System protection
In Fig. 5, online operation may face various problems, such as machine failures, network issues, dependent
service provider crashes, and a surge in traffic. How to survive in such a dangerous environment? We cannot
trust others, we can only improve the reliability of our services. The general methods adopted include: circuit
breaker, current limiting, degradation, retry, etc.

Circuit breaker: When there is a problem with the service provider that this study relies on, the service of
this study cannot be dragged down. The commonly used method is circuit breaker. When the success rate of the
relying party is lower than the threshold set in this study, pause the call to it and retry after a certain interval.
Commonly used fuse components include Hystrix, Sentinel, etc. The following table is a comparison between
Hystrix and Sentinel. Considering that Netflix no longer maintains Hystrix and Sentinel has more diverse func-
tions, this study chose Sentinel as the fuse component for this study22–26.

Downgrading: When a sudden accident occurs and the overall service is overloaded, in order to avoid overall
unavailability of the service, service degradation is generally enabled to ensure the normal operation of impor-
tant or basic services, and non important services are delayed or suspended. Therefore, this study implemented
a page degradation service. The service will periodically request the page interface and verify it. After passing
the verification, the results will be saved; When the service encounters abnormalities or overload, turn on the
downgrade switch, and the page service will directly read the previously saved static page data and return it.
Sacrifice personalization and downgrade from thousands of people and faces to thousands of people and faces.
Due to the removal of the page construction process, the processing power will be greatly improved to ensure
the normal operation of the service27–31.

In Fig. 6, current limiting: Current limiting is very important as it is an important level for protecting the
normal operation of services. Especially in the event of a sudden increase in traffic, reasonable flow limiting can
protect your service from being overwhelmed. If flow restriction is not configured, not only will the service be
disrupted during a sudden increase in traffic, but it will also be difficult to recover because the service will be

Figure 5. Full link security and effective timing.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

disrupted again after restarting. This study generally configures current limiting at the gateway layer and service
layer separately. The gateway layer can configure single machine current limiting using nginx’s current limiting
plugin. The service layer uses Sentinel flow limiting. Sentinel can limit traffic based on QPS, concurrency, and
call relationships, and supports overall cluster traffic restriction. The following figure shows the implementation
of Sentinel cluster current limiting.

In Fig. 7, Try again: From the client to the backend service, there may be exceptions in various stages, such
as DNS failures, operator node failures, backend server failures, etc., resulting in request failures. For different
situations, appropriate retries can increase the success rate of requests. There are several types of retries on the
mainstream frontline financial industry APP end:

In Fig. 8, IP direct retry, which controls the number of retries by configuring the number of direct IPs; Super
pipeline retry, the company’s self-developed HTTP based gateway proxy service, which can achieve remote retry;
HTTP retry; Try again with the original URL.

Retries can improve the success rate, but excessive retries may lead to excessive pressure on back-end ser-
vices and Avalanche effect. So the following points should be noted in the retry strategy: the retry strategy can
be cloud controlled, and in extreme cases, it can be configured in the background to turn off retry; Distinguish
error codes and try again. Not all error codes need to be tried again, such as error codes returned by backend
triggering current limiting, which do not need to be tried again.

Figure 6. Full Link System Security Routing Optimization.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

Data backup
In terms of database usage, this study needs to consider the high availability of the database. In this regard, the
company’s service cloud team has made many optimizations, which can be found in this article. This article will
not be elaborated on. As a business unit, it is important to note that the use of databases should strictly follow
the architecture of two locations and three centers for application and use.

Figure 7. Core data security flow.

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

Monitoring alarms
A comprehensive monitoring and alarm system can enable this study to detect and handle service issues in a
timely manner, avoiding their spread. From different latitudes, this study requires different monitoring, mainly
including:

Indicator monitoring; The key indicators of monitoring services include three parts: machine indicators
(CPU, memory, network traffic, etc.), service indicators (QPS, success rate, response time, etc.), and third-party
interface indicators (QPS, success rate, response time, etc.).

The specific implementation plan is to report indicators through Collected and self-developed Meerkat com-
ponents, submit them to Graphint for summary and storage, and display them through Grafana.

Application log monitoring: Based on application log monitoring, this study can discover more fine-grained
exceptions, such as exceptions thrown within the application, internal business logic errors, etc. Firstly, this study
defines a format specification for log printing, where all logs that need to be monitored are output in a unified
format. Then, through the log collection component Venus, the logs on the machine are delivered to the Kafka
queue, and finally entered into the Druid temporal database for multi-dimensional analysis and storage. The
front-end report is presented using Graphna17–20.

Full link monitoring: If you want to monitor contextual link relationships, cross system fault localization, and
other related issues, you need to perform full link monitoring. For detailed information, please refer to the article
"Exploration and Practice of Full Link Automated Monitoring Platforms in the Financial Field of Mainstream
First tier Large Factories" in this article.

Figure 8. Time series flow native distribution mechanism.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

Emergency plan
Although a series of availability optimization measures were listed above in this study, various anomalies and
failures still occur in real online environments, requiring manual handling in this study. When a problem truly
arises, if you go to the scene to think about how to handle it, you may not have achieved the optimal solution
due to panic. Therefore, this study needs to anticipate potential issues and how to handle them in advance, and
form a written document. When problems arise, this study only needs to process the document step by step21.

Service quality inspection
With an optimization plan in place, how can I determine if the service has been implemented according to the
optimization plan? How to ensure high long-term availability of services? This study does not want to complete a
round of optimization. After the service maturity is improved, if there is no follow-up for a long time, the service
maturity will gradually begin to decline.

Therefore, automated checks were conducted on these common service maturity indicators, and daily health
reports were generated to monitor the maturity of services. Once there is an abnormality in a certain indicator,
this study can handle it in a timely manner. This keeps the service maturity of this study in a long-term stable
state.

Prototype experiment
Modeling prototype:

As shown in Fig. 9, the native temporal and global architecture of the metaverse full link is shown in the
figure. From the UE end to the firewall, the load balancing agent optimizes multi-dimensionally, accesses the
port port and IP whitelist based on REST, and performs multi-dimensional DDD partitioning. At the same
time, the upper and lower boundaries are clearly defined, including third-party services and configuration file
collections. The architecture is deployed in the form of multiple nodes, multiple live in different places, and dual
live in different places, The database adopts a hybrid approach of static and dynamic multidimensional filtering
for persistence. The specific network protocol, data direction, logical architecture, and parameter configura-
tion are shown in the figure. Containerization: To achieve environmental consistency and rapid deployment of
cloud native architecture, containerization technology is used to package applications and their dependencies
into independent containers, achieving environmental consistency and rapid deployment. Containerization
enables applications to maintain consistency in different environments, and containers can be quickly deployed
and started, accelerating application delivery speed.Metaverse Cloud Native Architecture: To achieve flexibility
and scalability, the cloud native architecture adopts a microservice architecture that splits applications into
small, autonomous microservices. The microservice architecture enables different parts of an application to be
independently developed, deployed, and extended, achieving loose coupling and flexibility. Each microservice
can independently scale according to demand, providing better ability to cope with high loads and peak traffic.

Continuous delivery and integration: Achieve rapid feedback and delivery. The cloud native architecture
supports the practice of continuous delivery and integration, and achieves rapid feedback and delivery through
automated construction, testing, and deployment processes. Continuous integration ensures that every code
submission undergoes automated testing, improving software quality and stability. Continuous delivery achieves
rapid delivery through automated processes, meeting the rapid changes in market demand and user feedback.

Automated management: Realize elastic scaling and fault recovery with cloud native architecture. Utilize auto-
mated management tools to achieve elastic scaling and fault recovery. Automated scaling automatically adjusts
the number of application instances based on load changes, ensuring system resilience and high availability.
Automated management tools can automatically configure and manage various components of an application,
reducing manual operations and errors. At the same time, monitoring and automated fault detection tools can
timely detect and handle application failures, and quickly recover.

As shown in Fig. 10, the database deployment architecture is shown in the figure, with hierarchical deploy-
ment persistence. In the configuration database, the binlog is divided into databases, tables, and mapped table
fields. The parameters are dynamically transmitted to the application server and traffic model. The data link with
the lower layer is read and written based on socket rest, and the DEV is not delivered in one click mode. The
portal is responsible for attribute partitioning on the interface side and preprocessing of parameter proxies, The
configuration server is responsible for encapsulating and distributing user role attributes and related business
operations.

Distributed transactions are usually run on machines with multiple nodes, and there is a process of RPC
during runtime. Compared to a single system database, there are more abnormal links in ensuring the atomicity
of transactions, and there are more recovery and rollback situations. Currently, most of them are solved through

min f1 =

n
∑

j=1

ωj ∗ Tj

min f2 = 10 ∗ log

∑m
i=1

∑n
j=1

∑n
p=1

∑ui
ν=1 10

0.1∗PNiν ∗
lj
Viν

∗ xjipv
∑m

i=1

∑n
j=1

∑n
p=1

∑ui
ν=1

lj
Viν

∗ xjipv

min F(x) = [f1(x), f2(x), ..., fm(x)]

s.t.

{

g(x) ≤ 0, i = 1, 2, ..., p

h(x) = 0, j = 1, 2, ..., q

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

two-stage submission protocols. When a distributed transaction is submitted to multiple servers for processing,
each server needs to record logs. When a transaction fails, the corresponding server needs to perform a rollback
operation, which is a typical distributed transaction processing process.

Upgrading from "two places and three centers" to "three places and five centers" is a major upgrade of infra-
structure, not just an increase in simple data replicas. The architectural improvements it brings include the
following points.

(1) The database has urban level disaster recovery capabilities.
(2) The application has urban level disaster tolerance capability, and the deployment of the application can

achieve a dual center model of City 1 and City 2, enhancing the disaster tolerance capability of the applica-
tion.

(3) The capacity of the database has increased, the number of read-only replicas has increased, and service
capabilities have been enhanced.

This upgrade also introduces new challenges to the original data center architecture.

(1) The increased time consumption brought about by cross city has an impact on batch processing of business,
overall link time consumption, and hot lines.

(2) The number of data synchronization replicas has increased, and the network in the original machine room
needs to be expanded.

(3) The number of data synchronization replicas has increased, and the hardware resources of the original
tenants have expanded.

During the process of architecture upgrade, it is necessary to always maintain disaster recovery capability:
after any single computer room fails, the cluster remains available, and in case of a computer room failure in any
city other than the city 1 where the main database is located, the cluster remains available and can still provide
services.

Figure 9. Full Link Technical Architecture for Production Environment.

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

In Fig. 11, the logic of the application side full link sorting data interface is shown in the figure. On the left
is a universal platform for multidimensional authorization and standardization of heterogeneous data. For the
service layer, regular matching of third-party data sources is required, especially the logical verification of API
interface message headers and information entropy. On the right is the API parameters for the binding interface
of the service provider platform. For other third-party applications, payment and order placement are required,
Facilitate the ecological construction of the original metaverse of the financial circle link cloud.

Before submitting, the business service sends events to the event service, which only records events and does
not send them. The business service notifies the event service after submitting or rolling back, and the event
service sends or deletes events. Don’t worry about the business system crashing after submitting or rolling over,
and unable to send confirmation events to the event service, because the event service will regularly retrieve all
events that have not yet been sent and query the business system, and decide whether to send or delete the event
based on the return of the business system.

Although external events can decouple the business system from the event system, they also bring additional
workload: external event services incur two additional network communication costs compared to local event
services (before submission and after submission/rollback), and the business system also needs to provide a
separate query interface for the event system to determine the status of unsent events.

Precautions for reliable event notification mode:
There are two points to note about the reliable event pattern: 1 Correct sending of events; 2. Repeated con-

sumption of events.By using asynchronous messaging services, it is possible to ensure the correct sending of
events. However, it is possible for events to be sent repeatedly. Therefore, it is necessary for the consumer to
ensure that the same event is not consumed repeatedly, in short, to ensure the idempotence of event consumption.

If the event itself is a state type event with idempotence, such as notification of order status (placed, paid,
shipped, etc.), the order of the events needs to be determined. Generally, it is determined through a timestamp
that after consuming a new message, when receiving an old message, it is directly discarded and not consumed. If
a global timestamp cannot be provided, consideration should be given to using a globally unified serial number.

For events that do not have idempotence, they are generally action behavior events, such as a deduction of
100 or a deposit of 200. The event ID and event result should be persisted, and the event ID should be queried
before consuming the event. If it has already been consumed, the execution result should be returned directly;
If there is a new message, execute it and store the execution result.

As show in Fig. 12, The details of the full link implementation are shown in the figure. Under the multi-
dimensional mapping mechanism of each fitness multithreading, thread pooling operations are carried out,

Figure 10. Full Link Data Storage Security Configuration.

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

and the aggregation interface of local attribute categories is divided into different threshold ranges and priority
settings. At the same time, multi-dimensional mapping is required for the protocol stack of multi thread program
metaverse overflow, which facilitates optimization of high concurrency, high reliability, end-to-end latency, and
load balancing in available scenarios.

Monitor the status of GC
Use various JVM tools to view the current logs, analyze the current JVM parameter settings, and analyze the
current heap memory snapshot and GC logs. Based on the actual memory partitioning and GC execution time
of each region, decide whether to optimize.

For example, some phenomena before a system crash:The time for each garbage collection is getting longer
and longer, from the previous 10 ms to around 50 ms, and the time for FullGC is also extended from the previ-
ous 0.5 s to 4-5 s.

The frequency of FullGC is increasing, with the most frequent occurrence occurring less than a min-
ute apart,The memory of the older generation is getting larger and no memory is released after each
FullGC,Afterwards, the system will be unable to respond to new requests and gradually reach the critical value
of OutOfMemoryError. At this point, it is necessary to analyze the JVM memory snapshot dump.

Generate a dump file for the heap
Generate the current Heap information through JMX’s MBean, which is an hprof file of size 3G (the size of the
entire heap). If JMX is not started, the file can be generated through Java’s jmap command.

Analyze the dump file
To open this 3G heap information file, it is obvious that typical Windows systems do not have such a large amount
of memory and must use highly configured Linux and several tools to open the file:

Visual VM
IBM HeapAnalyzer
Hprof tool included with JDK
Mat (a specialized static memory analysis tool for Eclipse) is recommended for use

Note: The file is too large. It is recommended to use Eclipse’s specialized static memory analysis tool Mat to
open the analysis.

Figure 11. Full Link Application Architecture Parameter Transmission Details.

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

Analyze the results to determine whether optimization is needed
If the parameters are set reasonably, there are no timeout logs in the system, the GC frequency is not high, and
the GC time is not high, then there is no need to perform GC optimization. If the GC time exceeds 1–3 s or
frequent GC, optimization is necessary.

Note: If the following indicators are met, GC is generally not required:

The execution time of Minor GC is less than 50 ms;
Minor GC execution is not frequent, approximately every 10 s;
Full GC execution time is less than 1 s;
Full GC execution frequency is not considered frequent, not less than once every 10 min.

Figure 12. Metaverse Full Link Native Multi Thread High Concurrency Response Mechanism.

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

Adjust GC type and memory allocation
If the memory allocation is too large or too small, or if the GC collector used is relatively slow, priority should be
given to adjusting these parameters, and one or several machines should be first selected for beta testing. Then,
the performance of the optimized machine and the unoptimized machine should be compared, and targeted
final choices should be made.

Continuous analysis and adjustment
Through continuous experimentation and trial and error, analyze and find the most suitable parameters. If the
most suitable parameters are found, apply these parameters to all servers.

As can be seen from Fig. 13, MC block represents the optimized Microservices security mechanism frame-
work proposed in this paper. In the QPS range of 100, the energy consumption is lower than that of other
typical algorithms, because in the low concurrency scenario, the gateway side and link tracking module have
low space and time in the process of api encryption and decryption, and the input transcoding rate for the fit-
ness function is low, so there is some performance improvement. However, with the increase of the workload,
Especially in the interval [200500], the energy consumption of the optimization framework proposed in this
article increases because the task volume in this interval needs to be further decomposed into itasks. For other
algorithm frameworks, there is no need for transcoding point frame mapping mechanism, so the performance
of other algorithms has advantages. However, as the level of data increases, the advantage of the multi-objective
optimization framework for full link energy consumption performance proposed in this article is more obvious,
with an average improvement of 5.38%

From Fig. 14, it can be seen that within the [100150] interval, the proposed optimization algorithm has
achieved a 3.8% improvement in local search and global convergence, reducing the load balance throughout
the entire lifecycle. However, within the [200800] interval, the loss is relatively high due to the large number
of task blocks in this segment and the diversification of structured semi structured data attributes, resulting in
triggered multithreading issues in components such as fuse reduction in the registry, Load balancing requires re
detecting the information entropy of each node based on the perceptual balancing algorithm. However, within
the [8001400] interval, load balancing has gradually improved, with an improvement rate of 1.82%. In high con-
currency scenarios, in addition to aggregation on the gateway side, the security filtering mechanisms for circuit
breaker reduction, task arrangement, and cluster deployment stages are all placed in the multi-objective function
optimization system, The number of invalid threads and coroutines is within the configured Thread pool range.

Figure 13. Total energy consumption.

Figure 14. Full-link load balance.

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

From Fig. 15, it can be seen that the latency and MC block improvement of the entire link are all in the lower
7th level, because components with high latency dependency are safe detection mechanisms, and the reconstruc-
tion mechanism of the detection mechanism is defined in the custom definition of multi-objective functions. The
quantization factor of multi-objective subfunctions is also the standard for quantifying the topology construction
in this article, such as link tracking and traffic detection component modules. Therefore, there is also a filtering
mechanism for global interception, The adaptation of the proxy mechanism is included in the encapsulated
security proxy detection pool. Overall increase of 3.12%.

Conclusions
We introduces the definition of a service maturity model proposed by mainstream frontline large corporations
in the financial field, which evaluates the maturity of services using quantifiable indicators. Then, based on the
model as a standard, the backend services were evaluated and the indicators with generally lower scores for
each backend service were summarized. We have sorted out optimization plans for these low sub items. And
an automated service quality detection mechanism has been established to ensure long-term stability of service
maturity. Through availability optimization, the maturity model scores of multiple important services have
been raised to over 8 points. Through an automated service quality detection mechanism, various indicators
of maturity have been monitored for a long time. Once some indicators are found to be abnormal, they should
be repaired and improved in a timely manner. In the future, continuous improvements and enhancements will
be made in the following two areas: automation of maturity model scoring. Avoid subjective factors of manual
grading while improving efficiency; The automated service quality detection mechanism adds more indicators.
I hope to continuously improve the service availability of this study through optimization based on the service
maturity model.

This paper proposes a multi-objective optimization Microservices framework that takes into account the secu-
rity mechanism, Define the fitness function, define the upper and lower limits, and perform multi-dimensional
constraints to filter for global and local optima. At the same time, reconstruct the circuit breaker current limiting
mechanism, dynamically detect protocol parameters, and perceive the logical relationship of heartbeat status
in real-time. Experimental results have shown that this innovative framework can solve scenarios such as high
concurrency, high reliability, and high availability Performance bottleneck, business degradation, especially in
financial and securities scenarios.

Data availability
The dataset generated and/or analyzed during the current research period is not publicly available, but can be
obtained from corresponding authors upon reasonable request.

Received: 10 July 2023; Accepted: 29 November 2023

References
 1. Ritterbusch, G. D. & Teichmann, M. Defining the metaverse: A systematic literature review. IEEE Access 11, 12368–12377 (2023).
 2. Lv, Y., Shi, W., Zhang, W., Hui, Lu. & Tian, Z. Do not trust the clouds easily: The insecurity of content security policy based on

object storage. IEEE Internet Things J. 10(12), 10462–10470 (2023).
 3. Wang, Z. et al. A covert channel over blockchain based on label tree without long waiting times. Comput. Networks 232, 109843

(2023).
 4. Newman, S. A. Building microservices: Designing fine-grained systems. (2015).
 5. Newman, S. Building Microservices (O’Reilly Media, Inc., 2015).
 6. Thones, J. Microservices. Softw. IEEE 32(1), 116–116. https:// doi. org/ 10. 1109/ MS. 2015. 11 (2015).
 7. Dineva K., & Atanasova, T. Architectural ML Framework for IoT Services Delivery Based on Microservices. (2021).

Figure 15. Full link delay.

https://doi.org/10.1109/MS.2015.11

18

Vol:.(1234567890)

Scientific Reports | (2023) 13:22059 | https://doi.org/10.1038/s41598-023-48724-y

www.nature.com/scientificreports/

 8. Li, J. et al. A novel method for identifying microservices by considering quality expectations and deployment constraints. Int. J.
Softw. Eng. Knowl. Eng. 3, 32. https:// doi. org/ 10. 1142/ S0218 19402 25001 9X (2022).

 9. Hassan, S., Bahsoon, R. & Buyya, R. Systematic scalability analysis for microservices granularity adaptation design decisions. Softw.
Pract. Exp. 52(6), 1378–1401. https:// doi. org/ 10. 1002/ spe. 3069 (2022).

 10. Liu, H. et al. BlueNavi: A microservices architecture-styled platform providing maritime information. Sustainability 14, 2173
(2022).

 11. Das, A. & Chakraborty, S. Where do all my smart home data go? Context-aware data generation and forwarding for edge-based
microservices over shared IoT infrastructure. Future Gener. Comput. Syst. 134, 204 (2022).

 12. Stavrinides, G. L. & Karatza, H. D. Containerization, microservices and serverless cloud computing: Modeling and simulation.
Simul. Model. Pract. Theory Int. J. Feder. Eur. Simul. Soc. 118, 102551 (2022).

 13. Menhour, H. et al. Searchable Turkish OCRed historical newspaper collection 1928–1942. J. Inf. Sci. 49(2), 335–347. https:// doi.
org/ 10. 1177/ 01655 51521 10006 42 (2023).

 14. Khoshnevis, S. A search-based identification of variable microservices for enterprise SaaS. 中国计算机科学前沿 17(3), 173208.
https:// doi. org/ 10. 1007/ s11704- 022- 1390-4 (2023).

 15. Schabbink, J. ASSIST-IoT: A modular implementation of a reference architecture for the next generation Internet of Things.
Electronics https:// doi. org/ 10. 3390/ elect ronic s1204 0854 (2023).

 16. De Castro L. F. S., & Rigo, S. Relating edge computing and microservices by means of architecture approaches and features,
orchestration, choreography, and offloading: A systematic literature review. https:// doi. org/ 10. 48550/ arXiv. 2301. 07803 (2023).

 17. Yao K., Ni, H. X., Wang, Y., et al. Low cost and high concurrency ID maker in distributed environment. https:// doi. org/ 10. 1051/
itmco nf/ 20171 203003. (2017).

 18. Peng, J., Cai, K. & Jin, X. High concurrency massive data collection algorithm for IoMT applications. Comput. Commun. https://
doi. org/ 10. 1016/j. comcom. 2020. 04. 045 (2020).

 19. Huang, W. H. High-concurrency custom-build relational database system’s design and SQL parser design based on turing-complete
automata. Comput. Sci. https:// doi. org/ 10. 48550/ arXiv. 2008. 04640 (2020).

 20. Mathur, R. Index contention under high concurrency in a database system:US16858856. US20210334273A1 [2023-07-04].
 21. Guo, Y. Low-latency and high-concurrency 5G wireless sensor network assists innovation in ideological and political education

in colleges and universities. Hindawi Lim. https:// doi. org/ 10. 1155/ 2021/ 98678 00 (2021).
 22. Sun Q .HIGH-CONCURRENCY QUERY METHOD, INTELLIGENT TERMINAL AND STORAGE

MEDIUM:WO2020CN134276[P].WO2022062184A1[2023–07–04].
 23. Chi, X., Liu, B., Niu, Q., et al. Web load balance and cache optimization design based Nginx under high-concurrency environment.

In: Third International Conference on Digital Manufacturing & Automation. IEEE, https:// doi. org/ 10. 1109/ ICDMA. 2012. 241.
(2012).

 24. Min-Xia, Z. The design and implementation of B2B business systems based on high-concurrency and mass data. J. Henan Univ.
Technol. (2009).

 25. Galdámez, P., Muoz-Escoí, F. D. & Bernabéu-Aubán, J. M. HIDRA: Architecture and High Availability Support[J].(2022).
 26. Hirano, Y., Satoh, T. & Miura, F. Improved extendible hashing with high concurrency. Syst. Comput. Jpn. https:// doi. org/ 10. 1002/

scj. 46902 61301 (1995).
 27. Johnson, T., Maugis L. Two approaches for high concurrency in multicast-based object replication. (1995).
 28. Youyi, Z. Design and application of main memory database in high-concurrency cluster monitoring system. Comput. Appl. Softw.

https:// doi. org/ 10. 4028/ www. scien tific. net/ AMR. 154- 155. 87 (2011).
 29. Gerard, S., Mraidha, C., Terrier, F., et al. A UML-based concept for high concurrency: the real-time object. In 7th IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2004), 12–14 May 2004, Vienna, Austria. IEEE, https://
doi. org/ 10. 1109/ ISORC. 2004. 13003 30 (2004)

 30. Behren, R. V., Condit, J., & Brewer, A. E. Why events are a bad idea (for high-concurrency servers). Hotos.2003.DOI:EP2326143
B1. (2003).

 31. Mohan, C. & Levine, F. ARIES/IM: An efficient and high concurrency index management method using write-ahead logging. Acm
Sigmod Record 21(2), 371–380. https:// doi. org/ 10. 1145/ 130283. 130338 (1992).

Author contributions
S.S. is the first person in charge of the project and the only author.

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1142/S021819402250019X
https://doi.org/10.1002/spe.3069
https://doi.org/10.1177/01655515211000642
https://doi.org/10.1177/01655515211000642
https://doi.org/10.1007/s11704-022-1390-4
https://doi.org/10.3390/electronics12040854
https://doi.org/10.48550/arXiv.2301.07803
https://doi.org/10.1051/itmconf/20171203003
https://doi.org/10.1051/itmconf/20171203003
https://doi.org/10.1016/j.comcom.2020.04.045
https://doi.org/10.1016/j.comcom.2020.04.045
https://doi.org/10.48550/arXiv.2008.04640
https://doi.org/10.1155/2021/9867800
https://doi.org/10.1109/ICDMA.2012.241
https://doi.org/10.1002/scj.4690261301
https://doi.org/10.1002/scj.4690261301
https://doi.org/10.4028/www.scientific.net/AMR.154-155.87
https://doi.org/10.1109/ISORC.2004.1300330
https://doi.org/10.1109/ISORC.2004.1300330
https://doi.org/10.1145/130283.130338
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Research on multi-dimensional reconstruction mechanism of cloud native full link in the metaverse scenario
	Optimization model
	Service maturity model
	Low item sorting
	Low sub item optimization plan
	Development testing
	Code specification
	Unit testing
	Unit testing
	Interface dial test

	Operation and maintenance launch
	Grayscale online mechanism
	Online rollback

	Online availability
	System protection
	Data backup
	Monitoring alarms
	Emergency plan

	Service quality inspection

	Prototype experiment
	Monitor the status of GC
	Generate a dump file for the heap
	Analyze the dump file
	Analyze the results to determine whether optimization is needed
	Adjust GC type and memory allocation
	Continuous analysis and adjustment

	Conclusions
	References

