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Study on reservoir optimal 
operation based on coupled 
adaptive ε constraint and multi 
strategy improved Pelican 
algorithm
Ji He 1, Xiaoqi Guo 1, Songlin Wang 1*, Haitao Chen 1 & Fu‑Xin Chai 2

The optimal operation of reservoir groups is a strongly constrained, multi-stage, and high-dimensional 
optimization problem. In response to this issue, this article couples the standard Pelican optimization 
algorithm with adaptive ε constraint methods, and further improves the optimization performance 
of the algorithm by initializing the population with a good point set, reverse differential evolution, 
and optimal individual t-distribution perturbation strategy. Based on this, an improved Pelican 
algorithm coupled with adaptive ε constraint method is proposed (ε-IPOA). The performance of the 
algorithm was tested through 24 constraint testing functions to find the optimal ability and solve 
constraint optimization problems. The results showed that the algorithm has strong optimization 
ability and stable performance. In this paper, we select Sanmenxia and Xiaolangdi reservoirs as the 
research objects, establish the maximum peak-cutting model of terrace reservoirs, apply the ε-IPOA 
algorithm to solve the model, and compare it with the ε-POA (Pelican algorithm coupled with adaptive 
ε constraint method) and ε-DE (Differential Evolution Algorithm) algorithms, the results indicate that 
ε. The peak flow rate of the Huayuankou control point solved by the IPOA algorithm is 12,319 m3/s, 
which is much lower than the safe overflow flow rate of 22,000 m3/s at the Huayuankou control point, 
with a peak shaving rate of 44%, and other algorithms do not find effective solutions meeting the 
constraint conditions. This paper provides a new idea for solving the problem of flood control optimal 
operation of cascade reservoirs.

Flood is one of the most frequent and serious natural disasters faced by human beings. In China, floods occur 
frequently and extensively, seriously endangering people’s lives and property1. In addition, 60–80% of the rainfall 
occurs mainly during the flood season, which exacerbates the severity of floods2. For example, a once-in-a-
millennium extraordinarily heavy rainstorm hit Zhengzhou on July 20, 2021, causing millions of people to be 
affected and causing huge economic losses.

As an engineering measure, reservoirs play the role of storing flood water, reducing flood peaks and protecting 
downstream safety during the flood season3. Reservoir flood control operation, as a non-engineering measure 
corresponding to reservoirs, has always been a hot spot for research. There are often multiple reservoirs in the 
flood control system, and it is difficult for a single reservoir to fully play its role in flood control. However, there 
are complex hydrological and hydraulic connections and some strong constraints between reservoirs, making it 
more difficult to solve the reservoir flood control operation problem4.

In the past, scholars often used dynamic programming5–7 and linear programming8 to solve this problem, 
but as the number of reservoirs and the operation period in-crease, the convergence speed is slow and the 
problem of "dimensional disaster" occurs. The emergence of heuristic algorithms has solved this problem well, 
and some scholars have started to use heuristic algorithms to solve this problem. Cheng applied the chaotic 
genetic algorithm9 to the reservoir scheduling of hydropower station, and the convergence speed is much better 
than dynamic programming and standard genetic algorithm. He proposed an improved chaotic particle swarm 
algorithm10 based on logistic mapping to solve the reservoir flood control scheduling model. Chen coupled the 
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Yin-Yang Firefly Algorithm algorithm11 and ε-constraint method to establish the three-reservoirs flood control 
scheduling model. Liu12 uses particle swarm optimization algorithm with coupled penalty function to solve 
the maximum peak clipping model of cascade reservoirs. Zhang13 proposed a genetic algorithm coupled with 
penalty function to solve the flood control operation problem of cascade reservoirs. Although the penalty func-
tion method is often used to solve constraint problems, the selection of penalty parameters is difficult to grasp 
and too small to play a penalty role; If it is too large, it will cause errors due to the influence of errors. Although 
intelligent algorithms have been widely used, they are too stochastic and easily fall into local optimal solutions, 
and the solution results are not stable.

In addition, simple optimization algorithms are difficult to solve the multi constraint and strong constraint 
problems of reservoir group flood control operation models, so constraint processing techniques need to be 
combined in the solving process to solve the relevant constraint conditions. ε Constraint method is a commonly 
used method for handling constraint conditions, however, research has shown that based on ε. The constrained 
optimization algorithm has achieved good results in handling constrained optimization problems, but further 
improvement is still needed in terms of convergence accuracy and robustness. Literature14 proposes an adaptive 
approach ε Constraint method, by improving constraint processing technology and adaptive settings ε, avoid 
falling into local optima, improve the robustness and search efficiency of the algorithm. The Pelican Optimization 
Algorithm (POA) is a novel heuristic algorithm pro-posed by Pavel Trojovský and Mohammad Dehghani15 in 
2022, which simulates the behavior of pelicans hunting in nature. Experimental simulations comparing the POA 
algorithm with eight common algorithms such as Genetic Algorithm (GA), Differential Evolution (DE), and 
Grey Wolf Optimization Algorithm (GWO) in the literature demonstrate that the POA algorithm has high local 
search ability and convergence toward the global optimum. However, like other heuristic algorithms, it also has 
the drawback of too much randomness, which affects its exploration toward the global optimum. Therefore, this 
paper proposes a pelican algorithm (IPOA) based on good point set and reverse differential evolution. First, the 
inclusion of the good point set makes the initial population distribution more uniform and improves the diversity 
of the population16; second, the reverse differential evolution algorithm is incorporated to improve the diversity, 
convergence speed and optimality-seeking accuracy of the algorithm; finally, an adaptive t-distribution variation 
strategy is introduced for the optimal pelican individuals to avoid the algorithm from falling into local optimal 
solutions. The contributions of this article are as follows: to address the above issues, this paper proposes an IPOA 
algorithm with coupled adaptive ε-constraint method and the cec2006 test function set were used for simulation 
experiments. The experiment shows that the algorithm proposed in this paper not only finds the global optimal 
solution when solving constrained optimization problems, but also has good robustness compared to the original 
algorithm. Take ε-IPOA algorithm was applied to solve the flood control operation model of the Sanmenxia-
Xiaolangdi cascade reservoir, and compared with other algorithms. The results indicate that, the application of 
ε-IPOA algorithm in reservoir operation problems has strong practicality, and the proposed scheme has a high 
peak clipping rate, which is more beneficial for downstream disaster prevention and reduction. This algorithm 
provides a new approach for solving the joint flood control operation of reservoir groups.

This paper is structured as follows: “Flood control operation model of cascade reservoirs” section shows the 
joint flood control and operation model for reservoir groups; “IPOA algorithm based on adaptive ε-constraint” 
section introduces the ε-IPOA algorithm and performs functions tests to prove its superiority; “Case analysis” 
section case study illustrates the results of joint operation of reservoir groups in the study area and discusses 
them; “Conclusion” section presents the conclusions of this paper.

Flood control operation model of cascade reservoirs
Objective function.  In order to reduce the flood control burden of the downstream reservoirs and the 
safety of the downstream flood control points, the flood control operation model of cascade reservoirs is estab-
lished based on the maximum peak clipping criterion. The maximum peak clipping criterion not only ensures 
that the maximum peak flow at the downstream control point is reduced, but also makes the discharge flow of 
the reservoir more uniform, reducing the flood risk of the basin.

As shown in Fig. 1, suppose that the basin flood control system has N cascade reservoirs, 1 flood control point, 
the inflow of the first reservoir and the interval flood flow between reservoirs are known, the number of dispatch-
ing periods is T, and the maximum peak clipping objective function of the downstream control point is as follows:

where qn,t is the discharge flow of the n-th reservoir in the t period; Qn,t is the interval flood flow between the 
n-th reservoir and the (n + 1)-th reservoir; �t is the operation interval.
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Figure 1.   N-class reservoir generalization map.
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Constraint condition. 

1.	 Water balance constraint

2.	 Water level constraint

3.	 Initial water level, end of period water level constraint

4.	 Discharge capacity constraint

5.	 Maximum safe discharge constraint

6.	 Non-negative constraint
	   All the above variables are non-negative.
	   Where Vn,t−1 , Vn,t is the initial storage capacity and final storage capacity of the nth reservoir in the t 

period;In,t is the inflow of the n-th reservoir in the t period;qn,t is the outflow of the n-th reservoir in the t 
period;Qmax is the maximum downstream flow allowed to ensure the safety of the downstream river;q

(

Zn,t
)

 
is the maximum discharge capacity of the nth reservoir when the initial water level is Zn,t;Zn,0 is the initial 
water level at the initial time of the n-th reservoir operation;Zn,begin is the starting water level of the n-th 
reservoir;Zn,T is the water level at the end of the n-th reservoir operation period.Zn,end is the expected water 
level at the end of the n-th reservoir operation period.

IPOA algorithm based on adaptive ε‑constraint
POA algorithm.  In the Pelican optimization algorithm, the behavior and strategies of the pelicans during 
attack and hunting were simulated to update candidate solutions. The hunting process is divided into two stages: 
approaching the prey (exploration stage) and flying on the water surface (development stage).

Initialization. 

In the equation, Xij is the position of the j-th dimension of the i-th pelican; N is the number of populations; 
D is the dimension of the decision variable; lb and ub are the lower and upper bounds of the decision variables 
respectively.

Phase 1: Exploration phase.  In the first stage, the pelican determines the location of its prey and then moves 
towards this designated area. The mathematical model is as follows:

In the formula, Xnew1
i,j  is the position of the j-th dimension of the i-th pelican based on the first stage update; I 

is a random integer of 1 or 2; Pj is the position of the prey in the jth dimension; Fp is the objective function value 
of the prey; Fi is the objective function value of the i-th pelican.

Phase 2: Development phase. 

In the formula, Xnew2
i,j  is the position of the j-th dimension of the i-th pelican based on the second stage 

update; R is a random integer of 0 or 2; iter is the number of current iterations; Maxiter is the maximum number 
of iterations.

IPOA algorithm.  In order to improve the performance of the POA algorithm, the following improvements 
are made in this paper on the basis of the POA algorithm.

Goodpoint set principle.  The standard POA algorithm uses a random method to initialize the pelican popula-
tion, which is highly randomized and some better pelican individuals are easily ignored. In this paper, we adopt 

(2)Vn,t = Vn,t−1 +
(

In,t − qn,t
)

�t

(3)Zn,min ≤ Zn,T ≤ Zn,max

(4)Zn,0 = Zn,begin

(5)Zn,T = Zn,end

(6)qn,t ≤ q
(

Zn,t
)

(7)qn,t ≤ Qmax

(8)Xij = lbj + rand ∗
(

ubj − lbj
)

; i = 1, 2, ...,N; j = 1, 2, ...,D

(9)Xnew1
i,j =

{

Xi,j + rand ∗
(

Pj − I ∗ Xi,j

)

, Fp < Fi
Xi,j + rand ∗

(

Xi,j − Pj
)

, else

(10)Xnew2
i,j = Xi,j + R ∗

(

1−
iter

Maxiter

)

∗ (2 ∗ rand − 1) ∗ Xi,j
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the good point set theory proposed by Chinese mathematician Hua Luogeng to initialize the pelican population. 
Good point set is an effective method that can select points uniformly, and compared with the random method, 
the points taken using the good point set method can be more uniformly distributed in the search space. The 
literature17,18 demonstrated that the population initialized with good point set theory is more uniform and can 
increase the diversity of the population during the initialization process. The formula is as follows:

where p is the smallest prime number satisfying p−3

2
≥ D;

Fusion of reverse differential evolution strategy.  The main idea of the reverse learning strategy19 is that when 
searching for the optimal solution, the current solution and the reverse solution are searched simultaneously, 
and the optimal solution is selected by comparing the fitness values of the current solution and its reverse solu-
tion. The initial population can increase the diversity of the population20 by adding a reverse population through 
the reverse learning strategy, and the reverse population solving formula is as follows:

where X̂ is the reverse solution.X is the current solution.
Differential evolution algorithm21 comes from the genetic algorithm proposed earlier, and also has the evo-

lution process of crossover, mutation and selection. Differential evolution of pelican population after reverse 
learning is carried out as follows:

First, each pelican individual of the current population and the reverse population was subjected to a muta-
tion operation by Eq. (13) to obtain mutant individuals.

where xi is the current pelican individual; ui is the mutant individual corresponding to the current pelican 
individual; K is the scaling factor; xr1 , xr2 are two pelican individuals randomly selected.

Then, a new pelican individual is generated by the crossover operation of Eq. (14).

where CR is the crossover probability.
Finally, more suitable individual pelicans were selected by comparing the magnitude of the fitness values, as 

shown in Eq. (15).

Optimal individual adaptive t‑distribution variation.  The convergence of the algorithm to the local extremum 
depends on the optimal position of the individual22. Therefore, in this paper, the adaptive t-distribution variation 
strategy in the literature23 is applied to the variation of the optimal pelican individual, and the current number of 
iterations is used as the degree of freedom of the t-distribution. At the beginning of the iteration, the t-distribu-
tion variation is close to the Coasean distribution variation, which is conducive to enhancing the search ability of 
the pelican individual at the global level and increasing the diversity of the population; at the end of the iteration, 
the t-distribution variation is close to the Gaussian distribution variation, which can enhance the search ability 
of pelican individuals near the optimal point and accelerate the convergence speed of the algorithm. The optimal 
individual adaptive t-distribution variance is formulated as follows:

where Xt
best are mutated pelican individuals; Xbest are currently the best pelican individuals; iter is the number 

of current iterations; t represents t-distribution.

Adaptive ε constraint method.  The ε-constraint method24 is a method proposed by Takahama for solv-
ing constrained optimization problems, which retains infeasible individuals with low constraint violation and 
low objective function values by relaxing the constraints, and gives these excellent solutions a chance to enter the 
next generation population, which in turn explores to more regions and finds better objective function values. 
To overcome the problem that the traditional ε-constraint method tends to fall into local optimal solutions, an 
adaptive ε-constraint method is proposed in the literature14 with the following improvements:

1.	 Improving the individual comparison criterion to make full use of good infeasible individuals to explore to 
more solution space, thus increasing the population diversity. The specific criterion is shown in Eq. (17):

(11)
xij = i ∗ 2 cos

(

2π j

p

)

x′ij = lbj + mod(xij , 1) ∗
(

ubj − lbj
)

(12)X̂ = lb+ ub− X

(13)ui = xi + K(xr1 − xr2)

(14)vi,j =

{

ui,j , rand(0, 1) ≤ CR
xi,j , otherwise

(15)xi =

{

vi , if f (vi)<f (xi)
xi , otherwise

(16)Xt
best = Xbest + Xbest ∗ t(iter)
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 where f(x) is the function fitness value;G(x) is the constraint violation value; Ps is a random number on the 
interval [0.9,1].

2.	 Adaptive ε adjustment strategy, the ε value of the traditional ε constraint method depends only on the num-
ber of iterations, the adaptive ε value fully considers the relationship between the objective function value 
and the size of constraint violation and the proportion of feasible individuals in the population, and makes 
adaptive adjustments at each generation. ε equation is as follows:

where Te is the number of truncated evolutionary iterations;� is the proportion of viable individuals in the 
population. The value of Te should be appropriate, too large will make a large number of infeasible individu-
als appear in the late iteration and affect the population convergence to a feasible solution; too small will 
eliminate a large number of infeasible individuals in the early iteration and easily fall into a local optimum 
solution.

Computational flow of the ε‑IPOA algorithm.  The steps of the ε-IPOA algorithm are as follows, and 
the flowchart is shown in  Fig. 2.

Step 1:	� Initialize the parameters, including the number of populations N, the maximum number of iterations 
T, the number of truncated evolutionary iterations Te, αmin , αmax , the boundary conditions and the 
dimensionality of the decision variables.

Step 2:	� Generate the pelican population by initializing the set of good points according to Eq. (11) and calculate 
the fitness value.

Step 3:	� Perform the reverse differential evolution operation on the pelican population according to Eqs. 
(12)–(15).

Step 4:	� Performing t-distribution variation on the optimal pelican individuals according to Eq. (16).
Step 5:	� Updating the position of the next generation of pelican individuals and calculating the fitness value.
Step 6:	� Comparing individuals and performing selection according to Eq. (17).
Step 7:	� Determine whether the condition to terminate the iteration is met, if so, go to step 8, otherwise go to 

step 3.
Step 8:	� Output the optimal pelican individual and the optimal fitness value.

Simulation test of ε‑IPOA algorithm.  To verify the effectiveness and feasibility of the POA algorithm, 
this article selects 24 test functions from the internationally recognized cec2006 test function set for simulation 
experiments, and compares them with DE and POA algorithms. Among them, each test function runs indepen-
dently 50 times, with a population of 200, a maximum iteration count of 10,000, a maximum function evaluation 
count of 500,000, a truncated evolution iteration count of 1000, and a tolerance value of 0.0001 for equation 
constraint violations. The experimental results are shown in Table 3.

The experimental results are shown in the table above, and the bolded font indicates the optimal effect. From 
Table 1, it can be seen that:

1.	 Adaptive ε-constraint method can effectively assist the IPOA algorithm in handling constrained optimization 
problems.

2.	 The three algorithms run independently on each function for 50 times. When the evaluation times are 
consistent, the average value of the results obtained by ε-IPOA algorithm is lower than that of the other two 
algorithms. This shows that when the Time complexity is consistent, the performance of ε-IPOA algorithm 
is better than that of ε-POA algorithm and ε-DE algorithm, and it has stronger global search ability. Except 
for the g20 and g22 functions, ε-IPOA algorithm has found the optimal solution that satisfies the constraint 
conditions.

(17)X1 is better than X2 ⇔


















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

































f (X1) < f (X2),G(X1) = 0,G(X2) = 0

f (X1) < f (X2), 0 < G(X1) ≤ ε, 0 < G(X2) ≤ ε

0 < G(X1) ≤ ε,G(X2) > ε

G(X1) < G(X2),G(X1) > ε,G(X2) > ε, rand ≤ Ps

f (X1) < f (X2),G(X1) > ε,G(X2) > ε, rand ≤ Ps

f (X1) < f (X2),G(X1) = 0, 0 < G(X2) ≤ ε

G(X1) = 0,G(X2) > ε

f (X1) < f (X2), 0 < G(X1) ≤ ε,G(X2) = 0

(18)ε(t) =

{

ε(0)× e−α×(t/Te), t ≤ Te
0, t > Te

(19)ε(0) = 0.6×

N
∑

i=1

G(Xi)/N

(20)α = αmin + �× (αmax − αmin)
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3.	 The three algorithms were independently run 50 times on each function, and the standard deviation of the 
results obtained by ε-IPOA algorithm was smaller than that of the other two algorithms, demonstrating the 
good robustness of ε-IPOA algorithm.

4.	 ε-IPOA algorithm only achieves a standard deviation of 0 when solving functions g01 and g12, indicating 
that this algorithm still has potential for development and needs to further improve its exploration and 
development capabilities.

Case analysis
Study area.  The Yellow River is the second largest river in China, with a total field of 5464 km and a basin 
area of 795,000  km2, originating from the Bayankara Mountains on the Qinghai-Tibet Plateau, flowing from 
west to east that through nine provinces and regions, including Qinghai, Sichuan, Gansu, Ningxia, Inner Mon-
golia, Shanxi, Shaanxi, Henan and Shandong, and injecting into the Bohai Sea in Kenli County, Shandong Prov-
ince. In this paper, the area from Sanmenxia to Huankou in the middle and lower reaches of the Yellow River is 
selected as the study area, and flood control and scheduling research is carried out for Sanmenxia and Xiaolangdi 
tandem reservoirs. The geographical location is shown in Fig. 3. The tandem reservoir flood control and sched-
uling model takes the storage capacity of each reservoir at each time period as the decision variable, contains 
constraint constraints such as water balance, safe river discharge and gate discharge flow, and is solved by the 
ε-IPOA algorithm.

Sanmenxia Reservoir and Xiaolangdi Reservoir are both backbone reservoirs on the main stream of the 
middle and lower reaches of the Yellow River, mainly for flood control, taking into account the role of irrigation 
and power generation. Sanmenxia Reservoir controls a basin area of 688,000 km2, accounting for 91.5% of the 
total basin area of the Yellow River, and controls the flooding in the area above Sanmenxia. Xiaolangdi Reser-
voir controls a watershed area of 694,000 km2, accounting for 92.3% of the total area of the Yellow River basin, 
and is the only large comprehensive water conservancy project with large reservoir capacity in the middle and 
lower reaches of the Yellow River, except for Sanmenxia. The characteristic parameters of the two reservoirs are 
shown in Table 2.

Figure 2.   ε-IPOA algorithm flow chart.
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Function Algorithm Theoretical optimal value Worst Best Mean SD

g01

ε-IPOA

− 1.5000E+01

− 1.5000E+01 − 1.5000E+01 − 1.5000E+01 0.0000E+00

ε-POA − 1.4503E+01 − 8.1475E+00 − 1.1749E+01 1.6826E+00

ε-DE − 1.5000E+01 − 1.2453E+01 − 1.4715E+01 7.4398E−01

g02

ε-IPOA

− 8.0360E−01

− 8.0360E−01 − 7.6875E−01 − 7.9333E−01 9.4435E−03

ε-POA − 7.7833E−01 − 5.7747E−01 − 7.0594E−01 5.1016E−02

ε-DE − 6.5153E−01 − 2.7445E−01 − 4.5905E−01 1.2324E−01

g03

ε-IPOA

− 1.0005E+00

− 1.0005E+00 − 1.0005E+00 − 1.0005E+00 2.3125E−06

ε-POA − 8.5033E−01 − 5.1641E−02 − 3.4810E−01 2.1688E−01

ε-DE − 4.7602E−01 − 7.8962E−03 − 1.7354E−01 1.2715E−01

g04

ε-IPOA

− 3.0666E+04

− 3.0666E+04 − 3.0666E+04 − 3.0666E+04 1.1101E−11

ε-POA − 3.0666E+04 − 3.0661E+04 − 3.0665E+04 1.1365E+00

ε-DE − 3.0666E+04 − 3.0666E+04 − 3.0666E+04 1.1101E−11

g05

ε-IPOA

5.1265E+03

5.1265E+03 5.1265E+03 5.1265E+03 9.7019E−13

ε-POA 5.1265E+03 5.1266E+03 5.1265E+03 2.8167E−02

ε-DE 5.1272E+03 6.0487E+03 5.4180E+03 3.5816E+02

g06

ε-IPOA

− 6.9618E+03

− 6.9618E+03 − 6.9618E+03 − 6.9618E+03 1.8501E−12

ε-POA − 6.9618E+03 − 6.9618E+03 − 6.9618E+03 1.8501E−12

ε-DE − 6.9618E+03 − 6.9618E+03 − 6.9618E+03 1.8501E−12

g07

ε-IPOA

2.4306E+01

2.4306E+01 2.4306E+01 2.4306E+01 1.3039E−06

ε-POA 2.4732E+01 3.7891E+01 3.0215E+01 3.9248E+00

ε-DE 2.4400E+01 2.4485E+01 2.4434E+01 2.4382E−02

g08

ε-IPOA

− 9.5800E−02

− 9.5800E−02 − 9.5800E−02 − 9.5800E−02 1.9962E−17

ε-POA − 9.5825E−02 − 9.5825E−02 − 9.5825E−02 2.2760E−17

ε-DE − 9.5825E−02 − 2.7263E−02 − 9.1254E−02 1.7395E−02

g09

ε-IPOA

6.8063E+02

6.8063E+02 6.8063E+02 6.8063E+02 4.6874E−13

ε-POA 6.8065E+02 6.8422E+02 6.8103E+02 7.3283E−01

ε-DE 6.8063E+02 6.8064E+02 6.8064E+02 1.9027E−03

g10

ε-IPOA

7.0492E+03

7.0492E+03 7.0492E+03 7.0492E+03 2.6164E−12

ε-POA 7.0953E+03 7.6499E+03 7.3103E+03 1.5389E+02

ε-DE 7.1601E+03 7.4690E+03 7.2863E+03 5.7660E+01

g11

ε-IPOA

7.4990E−01

7.4990E−01 7.4990E−01 7.4990E−01 1.1292E−16

ε-POA 7.4990E−01 7.4993E−01 7.4990E−01 5.5128E−06

ε-DE 7.4990E−01 7.5635E−01 7.5014E−01 1.1789E−03

g12

ε-IPOA

− 1.0000E+00

− 1.0000E+00 − 1.0000E+00 − 1.0000E+00 0.0000E+00

ε-POA − 1.0000E+00 − 1.0000E+00 − 1.0000E+00 0.0000E+00

ε-DE − 1.0000E+00 − 1.0000E+00 − 1.0000E+00 0.0000E+00

g13

ε-IPOA

5.3900E−02

5.3900E−02 4.3880E−01 2.9769E−01 1.8863E−01

ε-POA 5.4117E−02 8.6592E−01 3.8025E−01 2.0604E−01

ε-DE 4.5505E−01 3.6967E+00 1.1278E+00 6.1815E−01

g14

ε-IPOA

− 4.7765E+01

− 4.7765E+01 − 4.7765E+01 − 4.7765E+01 3.1307E−04

ε-POA − 4.7744E+01 − 4.6145E+01 − 4.7294E+01 3.8388E−01

ε-DE − 4.6101E+01 − 3.5636E+01 − 4.1453E+01 2.5064E+00

g15

ε-IPOA

9.6172E+02

9.6172E+02 9.6172E+02 9.6172E+02 1.4729E−11

ε-POA 9.6172E+02 9.6172E+02 9.6172E+02 1.5223E−05

ε-DE 9.6172E+02 9.7044E+02 9.6388E+02 2.6095E+00

g16

ε-IPOA

− 1.9052E+00

− 1.9052E+00 − 1.9052E+00 − 1.9052E+00 6.7752E−16

ε-POA − 1.9052E+00 − 1.8994E+00 − 1.9049E+00 1.0415E−03

ε-DE − 1.9052E+00 − 1.9052E+00 − 1.9052E+00 8.5952E−14

g17

ε-IPOA

8.8535E+03

8.8535E+03 8.9276E+03 8.8807E+03 3.6298E+01

ε-POA 8.8567E+03 8.9644E+03 8.8898E+03 4.4754E+01

ε-DE 8.8735E+03 9.2980E+03 9.0170E+03 1.1064E+02

g18

ε-IPOA

− 8.6600E−01

− 8.6600E−01 − 8.6600E−01 − 8.6600E−01 1.2602E−08

ε-POA − 8.6423E−01 − 5.0218E−01 − 7.9447E−01 1.1080E−01

ε-DE − 8.6594E−01 − 8.6255E−01 − 8.6507E−01 6.9154E−04

Continued
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Table 1.   Comparison results of constraint algorithms.

Function Algorithm Theoretical optimal value Worst Best Mean SD

g19

ε-IPOA

3.2656E+01

3.2656E+01 3.2849E+01 3.2679E+01 4.5488E−02

ε-POA 3.4217E+01 6.3203E+01 4.0705E+01 7.0193E+00

ε-DE 3.3697E+01 3.6170E+01 3.4753E+01 5.1021E−01

g20

ε-IPOA

2.0490E−01

– – – –

ε-POA – – – –

ε-DE – – – –

g21

ε-IPOA

1.9372E+02

1.9372E+02 1.9372E+02 1.9372E+02 8.6506E−12

ε-POA 8.3662E+01 3.1422E+02 2.0519E+02 5.3327E+01

ε-DE 1.9375E+02 1.0000E+03 5.2062E+02 3.9881E+02

g22

ε-IPOA

2.3643E+02

– – – –

ε-POA – – – –

ε-DE – – – –

g23

ε-IPOA

− 4.0006E+02

− 4.0006E+02 − 4.0006E+02 − 4.0006E+02 2.1880E−04

ε-POA − 8.1813E+00 − 6.1885E−02 − 4.0419E−01 1.4737E+00

ε-DE − 1.6037E+02 9.0000E+02 4.5899E+02 4.4110E+02

g24

ε-IPOA

− 5.5080E+00

− 5.5080E+00 − 5.5080E+00 − 5.5080E+00 1.8067E−15

ε-POA − 5.5080E+00 − 5.5080E+00 − 5.5080E+00 1.8067E−15

ε-DE − 5.5080E+00 − 5.5080E+00 − 5.5080E+00 1.8067E−15

Figure 3.   Geographical location map of the research object.

Table 2.   Reservoir characteristics parameters.

Parameters Sanmenxia Xiaolangdi

Flood limit water level (m) 307 230

Flood control high water level (m) 320 275

Flood control storage capacity (108 m3) 59.79 40.5
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Flood process analysis.  The floods in the area from Sanmenxia to Huayuankou mainly come from the 
upstream water of Sanmenxia reservoir, the floods between Sanmenxia and Xiaolangdi reservoir area and the 
floods between Xiaolangdi reservoir and Huayuankou control point. These three kinds of floods rise fiercely 
with high peaks and large amounts, causing a great threat to the downstream. In this paper, we select the 1000-
year flood of 1958, which is the largest flood in the Yellow River since the availability of measured hydrological 
data, mainly caused by persistent heavy rainfall. The flood process is shown in Table 3.

Figure 4 shows the flood evolution process from Sanmenxia reservoir to Huayuankou interval. It is assumed 
that the inlet flow of Sanmenxia reservoir is Q1, the interval flood from Sanmenxia to Xiaolangdi reservoir is Q2, 
and the interval flood from Xiaolangdi reservoir to the control point of Huayuankou is Q3. The flood process 
of Huayuankou section is composed of floods in each area through the action of river evolution and reservoir 
regulation.

The process of flood water moving from upstream to downstream in a river is called flood evolution. The study 
of flood evolution allows staff at downstream sites to forecast the flood process at downstream sites based on the 
flow process measured at upstream sites, providing a basis for downstream flood forecasting and flood control. 
The commonly used calculation methods are hydrological method and hydrodynamic method, the hydrologi-
cal method is simple to calculate and requires less information, the hydrodynamics is limited by the measured 
topographic information25, this paper selects the hydrological method based on the tank storage equation and 
water balance principle—Muskingum method26 calculation, the parameter values used are shown in Table 4, 
Where K is the tank storage coefficient, x is the flow specific gravity coefficient, and △t is the time interval (hour).

Results and discussion
This paper aims to minimize the peak flow of Huayuankou section, and adopts ε-IPOA algorithm solvethe model. 
In the solution, the population size and the maximum number of iterations are 200 and 30w, respectively, and 
the number of truncation iterations Te is 1000. based on the measured hydrological data, the flood calendar time 
and reservoir operation period in this paper are 13d, and the calculation period is 4 h.

Analysis of operation results.  According to the maximum peak-clipping objective function of the garden 
mouth section established in “Objective function”, the ε-IPOA algorithm proposed in this paper is used to solve 
the flood control operation model of Sanmenxia and Xiaolangdi cascade reservoirs, and the flood process of 
the Huayuankou section is shown in Fig. 5 and Table 5, and the operation results of Sanmenxia and Xiaolangdi 
reservoirs are shown in Table 6, Figs. 6 and 7.

It can be seen from Tables 6 and 7 that after the joint dispatching, the peak flow of Huayuankou section 
is 12,319 m3/s, which does not exceed the controlled discharge of 22,000 m3/s of Huayuankou, and the peak 
clipping rate has reached 44%. Through the joint operation of the two reservoirs, the peak clipping rate have 
reached 27.1% and 64.1% respectively, which is conducive to the safety of the reservoir itself and reduces the 
flood control pressure in the downstream. Figures 6 and 7 are the operation process charts of Sanmenxia Res-
ervoir and Xiaolangdi Reservoir respectively. It can be seen from the figure that the water level processes of the 
two reservoirs are between the flood limit water level and the flood control high water level, indicating that the 
solution results meet the constraints and reach the feasible solution. The inflow flood of Xiaolangdi Reservoir 
has reached a "double peak", with the maximum peak flow exceeding 25,000 m3/s, which greatly exceeds the 
safe discharge of the river channel and increases the risk of flood disaster. After regulation, the discharge flow of 
Xiaolangdi Reservoir is stable within 10,000 m3/s, and the flood process is generally stable, ensuring the safety 
of flood discharge of the downstream river channel.

Comparison of operation results.  Algorithm comparison.  To verify the feasibility and applicability of 
the ε-IPOA algorithm, the ε-POA and ε-DE algorithms are chosen to solve the above model in this paper. To 
ensure the fairness of the algorithms, the parameters and initial conditions of the ε-POA and ε-DE algorithms 
are kept the same as those of the ε-IPOA algorithm. Unfortunately, neither algorithm found a feasible solution 
for the model, further illustrating the superiority of the ε-IPOA algorithm in solving the reservoir scheduling 
problem. Figures 8 and 9 show the solution results of the ε-POA and ε-DE algorithms for the Sanmenxia reser-
voir, respectively.

Comparison with single reservoir scheduling results.  In order to illustrate more intuitively the effect of joint 
operation than single reservoir operation, this paper also calculates the flooding process of the Huayuankou 
section under single reservoir operation, and the results are shown in Tables 7 and 8.

It can be seen from the above table that under the two modes, the peak flow of Huayuankou section does not 
exceed the control flow, but the peak clipping effect of Huayuankou section under the joint dispatching mode is 
better than that of single reservoir dispatching. By comparing Tables 6 and 8, under the single reservoir opera-
tion mode, the water levels of Sanmenxia and Xiaolangdi reservoirs have not recovered to the initial water level 
at the end of the operation period, which is not conducive to coping with the arrival of the next flood in the 
flood season. In addition, under the single reservoir operation mode, the peak clipping rate of Sanmenxia and 
Xiaolangdi reservoirs is lower than that of joint operation. Therefore, the peak clipping effect of the joint opera-
tion mode is the best, which can play a more important role in flood control of the reservoir.
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Period of time Inflow volume of Sanmenxia Reservoir (m3/s)
Interval flow of Sanmenxia-Xiaolangdi Reservoir 
(m3/s)

Interval flow of Xiaolangdi Reservoir-Huayuankou 
(m3/s)

1 9581 0 885

2 9581 0 885

3 7586 0 885

4 6636 0 885

5 6445 0 885

6 7348 0 885

7 9217 0 885

8 10,072 0 2302

9 9639 0 2442

10 9592 121 1289

11 8589 14,972 481

12 7516 10,441 183

13 7280 3994 0

14 7539 1565 0

15 7669 18,686 724

16 7787 20,554 0

17 8082 9422 2079

18 7834 5715 0

19 7716 1408 0

20 7716 1401 0

21 7669 1378 0

22 11,344 1355 0

23 12,638 1331 0

24 11,558 696 0

25 10,378 686 280

26 9198 683 2803

27 8316 2398 3131

28 7321 3305 2721

29 6554 1764 2833

30 5871 1764 1255

31 5573 1901 658

32 5402 1429 1019

33 5359 895 820

34 5288 758 758

35 5260 652 1205

36 5203 385 1541

37 4905 509 1416

38 4933 701 733

39 5527 394 745

40 5559 257 733

41 5606 536 0

42 5654 421 0

43 5701 604 0

44 5986 187 0

45 5939 0 0

46 5764 140 0

47 5669 536 0

48 5479 464 0

49 5226 323 0

50 4909 1047 0

51 4783 1302 0

52 5400 1370 0

53 5685 1438 0

54 5543 834 0

55 5147 370 0

56 4767 464 225

Continued
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Conclusion
In this paper, the adaptive ε-constrained method is coupled with the Pelican algorithm, and then the ε-IPOA 
algorithm is proposed by initializing the population with good point set, reverse differential evolution and 
optimal individual adaptive strategy to improve the Pelican algorithm. The case of Sanmenxia and Xiaolangdi 
reservoirs is also selected, and the joint flood control operation model of the cascade reservoirs is established 
based on the maximum peak clipping criterion, and this algorithm is applied to the solution of the model. The 
conclusions are as follows.

1.	 Select 24 test functions from the cec2006 test set to validate the ε-IPOA algorithm and compare them with 
ε-DE and ε-POA algorithms. The experimental results show that the ε-IPOA algorithm is superior to the 
other two algorithms, with stable solving performance and high accuracy, and can effectively handle con-
strained optimization problems. The Pelican optimization algorithm can improve its global search ability 
by initializing the population with a good point set, reverse difference mixing, and perturbing the optimal 
individual t-distribution.

2.	 In this paper, the ε-IPOA algorithm is used to solve the cascade reservoirs flood control operation problem, 
and the results obtained satisfy all the constraints, and the peak clipping rates of Sanmenxia reservoir, Xiaol-

Period of time Inflow volume of Sanmenxia Reservoir (m3/s)
Interval flow of Sanmenxia-Xiaolangdi Reservoir 
(m3/s)

Interval flow of Xiaolangdi Reservoir-Huayuankou 
(m3/s)

57 4561 1021 417

58 4688 1557 0

59 4957 1625 0

60 5004 1323 0

61 5289 1021 128

62 5986 489 302

63 8045 0 400

64 8916 0 494

65 9771 1625 332

66 10,769 1395 0

67 9375 417 0

68 7966 2323 0

69 7776 2595 0

70 7649 277 0

71 7221 47 528

72 7016 94 221

73 7237 0 123

74 7016 0 102

75 5780 1489 68

76 5084 2876 723

77 4513 3250 1089

78 4197 2689 123

79 3912 1808 0

Table 3.   Flooding process.

Flood 

Routing

Flood 

Routing

Sanmenxia 

Reservoir

Xiaolangdi 

Reservoir

Huayuankou 

control point

Q1 Q2 Q3q1 q2

Figure 4.   Flood evolution of Sanmenxia and Xiaolangdi reservoirs.

Table 4.   Muskingum parameters.

River section Flood propagation time Number of segments K △t X

Sanmenxia–Xiaolangdi 8 2 3.875 4 0.2

Xiaolangdi–Huayuankou 12 3 4.567 4 0.3
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Figure 5.   Huayuankou flood process.

Table 5.   Peak flow at Huayuankou.

Control station Control peak flow (m3/s) Peak flow (m3/s) Peak clipping rate

Huayuankou 22,000 12,319 44%

Table 6.   Calculation results of each reservoir.

Reservoir Initial water level (m) End water level (m) Inflow peak flow (m3/s) Discharge peak flow (m3/s)
Peak clipping rate 
(%)

Sanmenxia 307 307 12,638 9214 27.1

Xiaolangdi 235 235 26,376 9462 64.1
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Figure 6.   Sanmenxia Reservoir operation process.



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14093  | https://doi.org/10.1038/s41598-023-41447-0

www.nature.com/scientificreports/

angdi reservoir and Huayuankou control point are 27.1%, 64.1% and 44%, respectively, which effectively 
ensure the flood safety of the Huayuankou section. And the ε-POA algorithm and ε-DE algorithm with which 
for did not find a feasible solution. In addition, the results of the optimal operation of single reservoir are 
compared, and the joint operation is better than the single reservoir operation.

3.	 The results indicate that the ε-IPOA algorithm is feasible for solving the optimization operation problem of 
reservoir flood control, and can effectively address the strong constraints, multi-stage, and high-dimensional 
problems of reservoir operation models. This algorithm provides a new approach to solve the optimization 
scheduling problem of reservoir groups.

4.	 In the future, the performance of this algorithm will be further optimized through other strategies and 
applied to more complex series parallel hybrid reservoir groups. In addition, this algorithm is also applied 
to other engineering constrained optimization problems.
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Routing Period(4h)
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Figure 7.   Xiaolangdi Reservoir operation process.

Table 7.   Comparison of operation results.

Operation mode Control peak flow (m3/s) Peak flow (m3/s) Peak clipping rate (%)

Joint operation 22,000 12,319 44

Single reservoir operation 22,000 12,978 41
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Figure 8.   ε-POA solves the scheduling process of Sanmenxia reservoir.
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available but are available from 
the corresponding author on reasonable request.
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