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 Cell-type-specific and disease-associated 
expression quantitative trait loci in the 
human lung

Heini M. Natri    1,12, Christina B. Del Azodi2,3,12, Lance Peter1, Chase J. Taylor    4, 
Sagrika Chugh2,3,5, Robert Kendle1, Mei-i Chung1, David K. Flaherty6, 
Brittany K. Matlock6, Carla L. Calvi4, Timothy S. Blackwell4,7,8, 
Lorraine B. Ware    4,9, Matthew Bacchetta    10, Rajat Walia    11, Ciara M. Shaver4, 
Jonathan A. Kropski    4,7,8,13, Davis J. McCarthy    2,3,5,13 & 
Nicholas E. Banovich    1,13 

Common genetic variants confer substantial risk for chronic lung 
diseases, including pulmonary fibrosis. Defining the genetic control of 
gene expression in a cell-type-specific and context-dependent manner is 
critical for understanding the mechanisms through which genetic variation 
influences complex traits and disease pathobiology. To this end, we 
performed single-cell RNA sequencing of lung tissue from 66 individuals 
with pulmonary fibrosis and 48 unaffected donors. Using a pseudobulk 
approach, we mapped expression quantitative trait loci (eQTLs) across 38 
cell types, observing both shared and cell-type-specific regulatory effects. 
Furthermore, we identified disease interaction eQTLs and demonstrated 
that this class of associations is more likely to be cell-type-specific and linked 
to cellular dysregulation in pulmonary fibrosis. Finally, we connected lung 
disease risk variants to their regulatory targets in disease-relevant cell types. 
These results indicate that cellular context determines the impact of genetic 
variation on gene expression and implicates context-specific eQTLs as key 
regulators of lung homeostasis and disease.
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Genomic and functional studies have the potential to reveal the 
genetic, molecular and cellular drivers of clinical phenotypes, laying 
the groundwork for the development of targeted interventions. Many 
disease-associated variants identified in genome-wide association 
studies (GWAS) are located in the regulatory regions of the genome and 
contribute to disease risk and progression by effecting changes in gene 
expression1. Combining genotype information with transcriptional pro-
files allows for the identification of genetic regulators of gene expres-
sion (that is, expression quantitative trait loci (eQTLs)). This approach 
has been widely applied to bulk RNA sequencing of primary tissues, 
providing insights into the tissue specificity of regulatory effects and 
contributing to our understanding of the mechanisms underlying 

complex traits2. However, cell type and context (for example, disease 
status) and the specificity of trait-associated SNPs poses a challenge to  
understanding the regulatory mechanisms that modulate disease risk 
and progression.

Single-cell RNA sequencing (scRNA-seq) has emerged as a power-
ful tool for the transcriptional profiling of individual cells and cell types, 
mitigating many limitations of bulk RNA-seq. Capturing scRNA-seq 
profiles and genome-wide genotype information from a population 
of individuals allows for the unbiased, cell-type-specific interrogation 
of variant effects on gene expression. This approach can enable the  
discovery of eQTLs that are specific to rare or disease-relevant cell 
types and eQTLs that have opposing effects in different cell types, all of 

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-024-01702-0
http://orcid.org/0000-0003-4698-6103
http://orcid.org/0000-0002-7942-0483
http://orcid.org/0000-0002-9429-4702
http://orcid.org/0000-0003-4456-4484
http://orcid.org/0000-0001-5036-2921
http://orcid.org/0000-0002-8923-1344
http://orcid.org/0000-0002-2218-6833
http://orcid.org/0000-0003-2604-3247
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-024-01702-0&domain=pdf
mailto:nbanovich@tgen.org


Nature Genetics | Volume 56 | April 2024 | 595–604 596

Article https://doi.org/10.1038/s41588-024-01702-0

for analyzing measures of effect sizes across many conditions to iden-
tify patterns of sharing and specificity12. After applying multivariate 
adaptive shrinkage with mashr (Methods), eQTLs were considered 
significant if they had a local false sign rate (LFSR) of 0.05 or less in 
at least one cell type and 0.1 or less in any additional cell type. A gene 
was considered an eGene for a cell type if any eQTL for that gene was 
significant. Of the 6,995 genes tested for eQTL (Methods), 6,637 (95%) 
were eGenes in at least one cell type. The number of eGenes found 
per cell type was greater for more abundant cell types (Fig. 2a), with 
a positive correlation (R = 0.66, P = 6.6 × 10−6) between the number 
of eGenes and the number of individuals used for mapping (Fig. 2b). 
To evaluate the robustness of these results, we used a permutation 
scheme by shuffling genotypes and repeating the analysis for each 
cell type, and then comparing the permuted P values to the observed 
P values and to a theoretical null distribution (Supplementary Figs. 7 
and 8). We observed no notable deviation between the empirical and 
theoretical null distributions, demonstrating that our approach was 
well-calibrated to avoid false positives.

To summarize the overall pattern of eQTL sharing between cell 
types and compare this pattern with the transcriptional similarity, we 
visualized the top two principal components of the median pseudob-
ulked gene expression levels across all 38 cell types for the 6,995 genes 
included in the eQTL mapping (Fig. 2c) and of the mashr-estimated 
effect sizes of top eQTL across all 38 cell types (Fig. 2d). This analysis 
demonstrated that the relationships between the regulatory mecha-
nisms across lung cell types largely reflected the differences in expres-
sion patterns across cell types. We identified a set of top eQTLs by 
selecting the eQTL with the lowest, significant LFSR for each gene in 
each cell type. Using these criteria, there were 50,389 top eQTLs, with 
a median of 7 top eQTLs per gene across cell types (minimum = 1, maxi-
mum = 33). Top eQTLs were considered shared between two cell types if 
they were significant in both cell types and their mashr-estimated effect 
size was within a factor of 0.5. Across all cell types, the median pairwise 
sharing of top eQTLs was 93.5% (minimum = 55%, maximum = 99.3%; 
Fig. 3). The epithelial and endothelial lineages had the highest levels of 
interlineage sharing (median = 97.9%) while sharing between cell types 
within the mesenchymal lineage (median = 96.9%) and the immune 
lineages (median = 95.4%) was slightly lower.

We further classified top eQTLs as global (n = 34,030), multi-cell 
type (n = 14,027) or unique to a specific cell type (n = 2,332) (Methods). 
Global top eQTLs tended to be found in genes with higher average 
expression and that were more widely expressed across cells (Supple-
mentary Fig. 10). Top eQTLs unique to a single cell type tended to have 
higher absolute estimated effect sizes (Supplementary Fig. 10), prob-
ably due in part to limited statistical power to detect cell-type-specific 
effects in some cell types (Supplementary Fig. 10). Finally, these 
cell-type-specific top eQTLs also tended to be located further from 
the transcription start site (TSS) (Supplementary Fig. 10) of their tar-
get, which is consistent with the observation that cell-type-specific 
eQTLs typically impact enhancers, while widely shared eQTLs impact 
promoters13,14. We overlapped the top eQTLs with genic annotations 
from TxDb. Out of the 63% of sc-eQTL SNPs (eSNPs) that overlapped 
genic annotations, 7.9% were located on promoters and 30.3% were 
intergenic; the remaining overlapped at least one intron, exon or UTR. 
Out of the sc-eQTLs unique to a single cell type, shared between multi-
ple cell types or globally across all cell types, 4.0%, 7.1% and 6.7% were 
located on promoters, and 14.2%, 26.0% and 22.9% were intergenic, 
with no statistically significant differences in annotations between 
eQTLs belonging to the different categories (Supplementary Fig. 13a). 
We further explored the overlap of the various classes of eQTL among 
all enhancers in the EnhancerAtlas 2.0 (ref. 15) lung tissue enhancers, 
and the human lung epithelial cell line (Calu-3) enhancers, as well as 
cis-regulatory elements in the Human Cell Atlas16. Testing for the equal-
ity of proportions overlapping enhancer annotations between eQTLs 
and the null set, we found that multistate sc-eQTLs were more likely to 

which could go undetected in bulk RNA-seq of heterogeneous tissues. 
These context-specific eQTLs are more likely to escape the purifying 
selection that limits mutations impacting ubiquitous eQTLs and are 
thus more likely to have roles in disease3,4.

Interstitial lung diseases (ILDs) are chronic, progressive respira-
tory disorders characterized by the scarring of lung tissue accompanied 
by epithelial remodeling, loss of functional lung alveoli and accumu-
lation of extracellular matrix5. Pulmonary fibrosis is the end-stage 
clinical phenotype of ILD. Pulmonary fibrosis remains incurable; the 
most severe form of pulmonary fibrosis (idiopathic pulmonary fibrosis 
(IPF)) leads to death or lung transplant within 3–5 years of diagnosis5,6. 
The pathogenesis and progression of IPF involve a complex interplay of 
predisposing factors, cell types and regulatory pathways7,8. GWAS and 
meta-analyses have identified 20 IPF-associated variants, and polygenic 
analyses suggest that a large number of unreported variants contribute 
to IPF susceptibility9. Some of these variants are eQTLs in bulk lung 
tissue; however, their cell-type-specific regulatory consequences have 
not been explored.

To investigate the genetic control of disease-related gene expres-
sion in pulmonary fibrosis, we generated scRNA-seq data from the 
lung tissue samples of 114 individuals (66 individuals with ILD and 48 
unaffected donors). Combining these data with genome-wide geno-
type data, we mapped shared, lineage-specific and cell-type-specific 
cis-eQTLs across 38 cell types (Fig. 1a). We analyzed these data in con-
junction with IPF and other GWAS summary statistics to uncover the 
regulatory mechanisms underlying ILD risk and progression. Using 
interaction models, we reveal disease-specific regulatory effects that 
further elucidate the mechanisms underlying disease biology.

Results
scRNA-seq of 114 lung tissue samples
To enable cell-type-level eQTL mapping, we generated scRNA-seq and 
genome-wide genotype profiles for 114 individuals, including 66 (58%) 
with ILD and 48 (42%) unaffected donors (Fig. 1a and Supplementary 
Table 1). The ILD lungs included samples from 39 individuals with IPF 
and 27 with other forms of pulmonary fibrosis, including sarcoidosis 
(n = 4), connective tissue disease-associated ILD (n = 3), idiopathic 
nonspecific interstitial pneumonia (n = 3), coal worker’s pneumoco-
niosis (n = 3), chronic hypersensitivity pneumonitis (n = 2), intersti-
tial pneumonia with autoimmune features (n = 2) and unclassifiable 
ILD (n = 10). Most (67%) the lung samples were from individuals with 
self-reported ethnicity of European ancestry; 53 (46%) reported past 
or present tobacco use (Fig. 1b).

Single-cell suspensions were generated from fresh peripheral 
lung tissue samples and processed using the 10X Genomics Chromium 
platform. For the 55 ILD lung samples, two libraries were prepared 
from differentially affected (more or less fibrotic) areas of one lung 
to account for regional heterogeneity. Genotype data was obtained 
through low-pass whole-genome sequencing (WGS) followed by impu-
tation (Methods). We performed data integration, dimensionality 
reduction and unsupervised clustering of the 475,047 cells passing 
quality control using the Seurat package10 (Methods and Supplemen-
tary Figs. 1–3). Based on marker gene expression (Supplementary 
Table 2), we identified 43 cell types with a median of 5,811 cells (mini-
mum = 253, maximum = 94,413, mean = 11,048 cells; Fig. 1c).

Most eQTLs are shared between cell types
Out of 43 annotated cell types, we selected 38 that had 40 or more 
donors with five or more cells for that cell type to use for eQTL discovery 
(Fig. 1d). These inclusion criteria were selected to maximize our ability to  
map eQTLs with confidence across many cell types (Supplementary 
Note 1). Pseudobulk eQTL mapping was performed on each cell type 
using LIMIX according to the optimized approach described in ref. 11. 
To maximize precision and overcome varying statistical power across 
cell types, we used multivariate adaptive shrinkage, a statistical method 
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Fig. 1 | Mapping eQTLs across cell types in the human lung. a, Schematic 
illustration of the present study. b, Percentage proportions of donors according 
to diagnosis (42.1% unaffected controls, 34.2% IPF, 23.7% other ILD), self-reported 
ethnicity (66.7% European, 9.6% African American, 17.5% N/A, 6.1% other) and 
smoking history (46.5% ever smoker, 29.8% never smoker, 23.7% N/A). c, UMAP 
dimensionality reduction of 437,618 cells across the 38 cell types included in 

the eQTL analysis. Pseudocoloring indicates cell type; primary cell lineages are 
labeled. d, Numbers of donors with ≥5 cells for each cell type included in the 
analysis. LMM, linear mixed model; moDC, monocyte-derived dendritic cell; N/A, 
not applicable; NK, natural killer cell; NKT, natural killer T cell; pDC, plasmacytoid 
dendritic cell; SMC, smooth muscle cell. Panel a created with BioRender.com.
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be found overlapping the Human Cell Atlas cis-regulatory elements 
than the null set (P = 3.502 × 10−11; Supplementary Fig. 13b).

To explore the pattern of eQTL sharing across cell types more 
closely, we focused on multi-cell-type top eQTLs. We pruned these 
top eQTLs to get a representative sample for plotting (n = 3,725; Sup-
plementary Table 5) and adjusted the sign of the effect sizes to where 
positive indicates the common effect direction and negative indicates 
an opposite effect direction; Methods). In an unsupervised clustering 
of the sign-adjusted effect sizes of these pruned eQTLs, we identified 
distinct classes of eQTLs (Fig. 4), including groups of eQTLs primarily 
active in epithelial or immune cell types, or exhibiting opposing effects 
between lineages. To connect these eQTLs to biological processes, we 
tested for the enrichment of their target eGenes among Gene Ontology 
(GO) terms against a set of 6,995 background genes (Fig. 4 and Meth-
ods). The eQTLs in cluster 3 were primarily active in the epithelial cell 
types and were enriched for genes involved in the regulation of JUN 
kinase, which has been implicated in lung fibrosis and is a potential 
target for interventions for ILD17. Epithelial eQTLs in cluster 5 were 
enriched for genes associated with metabolism and response to bac-
teria. The eQTLs in cluster 4 were primarily significant in the myeloid 
innate immune cell types and showed enrichment for genes involved 
in, for example, cholesterol metabolism. Furthermore, eQTLs in cluster 
1 were mainly significant in the immune lineage and were enriched for 
genes contributing to cholesterol homeostasis, reflecting the central 
role of cholesterol metabolism in immune functions18. Cluster 7, also 
mainly active in the immune lineage, was enriched for genes involved 
with, for example, lipid transport. Lipid mediators have an important 
role in lung fibrosis19. The eQTLs in cluster 2 showed opposing effects 

between the epithelial and immune lineages and were enriched for 
genes associated with highly lineage-specific functions, such as epi-
thelial cell morphogenesis.

Disease-specific eQTLs are highly cell-type specific
To identify eQTLs specific to healthy or affected individuals or 
showing a different direction or degree of effect in the two groups, 
we performed disease-state interaction eQTL (int-eQTL) mapping 
(Methods). Testing across 33 cell types with five or more individu-
als with ILD and five or more unaffected donors and a minor allele 
frequency (MAF) ≥ 5% in each group, we detected 83,596 int-eQTLs. 
Applying this same analysis to our data after permuting the disease 
status resulted in 829 int-eQTLs, supporting a 1% false positive rate. 
Compared to the non-int-eQTLs, there was substantially less lineage 
and cell type sharing of int-eQTLs (Fig. 5a and Supplementary Fig. 12): 
for each gene, there was a median of 21 top int-eQTLs (minimum = 2, 
maximum = 28), resulting in a total of 75,482 top int-eQTLs. Com-
pared to the top non-int-eQTLs, int-eQTLs were further from the TSS 
(mean absolute distance, sc-eQTL = 43.1 Mb, int-eQTL = 52.9 Mb, t-test 
P = 2.22 × 10−16) and had larger effect sizes (mean absolute mashr pos-
terior beta, sc-eQTLs = 0.10, int-eQTLs = 0.66, t-test P = 2.22 × 10−16; 
Fig. 5b) and higher MAFs (mean MAF sc-eQTLs = 0.29, int-eQTLs = 0.37, 
P = 2.22 × 10−16). Some disease int-eQTLs were linked to overall expres-
sion differences between groups (Fig. 5c): 43% of int-eGenes were dif-
ferentially expressed (adjusted P < 0.1) between ILD and unaffected 
samples in the particular cell type. Out of these genes, 50.8% were 
expressed at a higher level in ILD. However, 21% of int-eGenes were 
widely expressed (>30% of cells) in both groups in the particular cell 
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type and did not exhibit notable differences in expression levels (log 
fold change < 0.2), indicating that these eGenes were equally expressed 
but were differentially affected by cis-regulatory loci. These include DSP 
with three top int-eQTLs, including rs2003916, which was not signifi-
cantly associated with IPF risk in the GWAS meta-analysis (P = 0.15) but 
showed differential effects between individuals with ILD and unaffected 
donors in four of the tested epithelial cell types (Fig. 5d).

To further interrogate the mechanisms underlying these int-eQTLs, 
we analyzed the int-eQTLs associated with eGenes expressed equally 
between individuals with ILD and unaffected donors for the enrich-
ment of known transcription factor binding sites (TFBS) (Methods).  
We identified 42 significantly enriched transcription factor motifs 
(q < 0.05), including WT1, several SOX, HOX and PAX family members, 
ERG and NF1 (Fig. 5e and Supplementary Table 6). Several of these 
have known importance in lung fibrosis. WT1 functions as a positive 
regulator of fibroblast proliferation, myofibroblast transformation 
and extracellular matrix production20. A number of SOX transcription 
factors are upregulated in IPF and are associated with fibroblast activa-
tion21,22. Out of the 37 genes encoding transcription factors disrupted 
by int-eQTLs that were also tested for differential expression, 30 were 
differentially expressed between ILD and unaffected samples in at 

least one cell type when using a significance threshold of adjusted 
P < 0.1. When examined across all cell types with significant differen-
tial expression, 43.0% of these genes were expressed at a higher level 
in the ILD samples. The seven that were equally expressed between 
cases and controls (adjusted P > 0.1), including WT1, SOX10, PAX7, 
HOXA11, HOXD12, NKX6-1 and SCRT1, could contribute to ILD patho-
genesis through differences in protein levels or localization, differential 
binding to cis-regulatory elements or chromatin-level differences in 
addition to or instead of differential transcription factor abundance. 
We further examined the expression of these transcription factors by 
contrasting donors with 0/0 genotypes for rs2003916 (Fig. 5d) and 
those with at least one alternative allele or those with two alternative 
alleles. We found no differential expression of the significantly enriched 
transcription factors in any of the epithelial cell types included in the 
eQTL analysis, corroborating that the effect is not due to overall dif-
ferences in transcription factor expression, but due to sequence-level 
or chromatin-level differences.

We assessed the level at which sc-eQTLs and int-eQTLs are 
replicated in bulk analyses by overlapping the eQTLs detected in 
this study with lung eQTLs from the Genotype-Tissue Expression 
(GTEx) project (Supplementary Note 2 and Supplementary Fig. 15)2.  
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All classes of sc-eQTLs and int-eQTLs were enriched among GTEx lung 
eQTLs (Fisher’s exact test, P < 2.2 × 10−16). Out of the globally shared 
and multi-cell-type top eQTLs, 19.1% and 21.9% were also eQTLs in 
the GTEx lung with a nominal P < 1 × 10−6 (Fig. 5f). However, only 
11.7% of sc-eQTLs unique to a single cell type and 13.4% of int-eQTLs 
were GTEx-significant. This finding demonstrates the power of 
cell-type-specific and context-specific analyses in uncovering reg-
ulatory effects concealed by less granular approaches. We further 
compared the immune cell type eQTLs detected in this study to the  
ones reported in a previous study on peripheral blood mononuclear 
cells (n = 982; Supplementary Note 2)23. Out of the 848 eQTLs for NK 
cells and 104 eQTLs for plasma cells detected by Yazar et al.23 that were 
also tested for in our study, 31.0% and 19.2% were significant in our 
analysis of these cell types, respectively.

Cell-type-specific patterns of colocalization at GWAS loci
To connect the shared and cell-type-specific regulatory variants to IPF 
risk, we compared our results to a recent IPF GWAS meta-analysis9. All 
major classes of eQTLs were enriched among loci implicated (nominal 
P < 1 × 10−6, Supplementary Table 7) by the IPF GWAS meta-analysis 
(Fisher’s exact test, globally shared P < 5.09 × 10−64, multi-cell-type 
P < 1.83 × 10−98, unique to a single cell type P = 0.0525), while a null set 
of nonsignificant eQTLs with a matched distribution of distances to 
the TSS was not (P = 1). GTEx bulk lung eQTLs were similarly highly 
enriched (P = 2.22 × 10−111) among the IPF GWAS loci. Surprisingly, dis-
ease interaction eQTLs were not more enriched among IPF GWAS loci 
than a null set of nonsignificant eQTLs.

In addition to the intersection analysis described above, we colo-
calized eQTL signals for 2,092 genes, including the target genes of the 
multistate eQTLs in Fig. 4 and 103 GWAS-implicated genes, with the IPF 
GWAS meta-analysis9, the UK Biobank (UKBB) IPF GWAS24 and an East 
Asian IPF GWAS25 (Methods). We identified five loci with evidence of 
colocalization (posterior probability for a single shared causal variant 
greater than 0.6) between risk loci and eQTLs in at least one cell type. 
These patterns largely overlapped between the IPF GWAS meta-analysis 
and the UKBB (Fig. 6 and Supplementary Table 8). Three of these loci 
were eQTLs for genes previously implicated in a GWAS in the National 
Human Genome Research Institute (NHGRI)-EBI GWAS Catalog26: 
MUC5B, DSP and KANSL1. The locus associated with KANSL1 in both 
the GWAS and eQTL analysis was also associated with the expression 
of KANSL1-AS1 across several cell types in our dataset. Additionally, 
we found that an eQTL for the gene JAML was significantly colocalized 
with a locus from the GWAS analysis. This variant did not meet the 
criterion for genome-wide significance in the GWAS analysis but was 
an eQTL across a number of myeloid lineage cell types (Supplementary 
Fig. 19). MUC5B was robustly expressed and colocalized with the IPF 
GWAS meta-analysis and the UKBB IPF GWAS in SCGB1A1+/MUC5B+ and 
SCGB3A2+ secretory cells, implicating these as the most likely cell types 
in which the risk variant functions (Supplementary Figs. 17 and 18). In 
contrast to the mostly European IPF GWAS meta-analysis and UKBB, 
the MUC5B eQTL did not significantly colocalize with the East Asian 
IPF GWAS in any cell type, probably because of the low frequency of the 
risk allele in Asian populations27. The pattern of population sharing was 
different for the DSP eQTL, which was colocalized with the IPF GWAS 
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meta-analysis in alveolar type 2, transitional alveolar type 2 and alveolar 
type 1 cells, and with the UKBB and the East Asian IPF GWAS in alveolar 
type 2 cells (Supplementary Fig. 21). The eQTL for KANSL1 colocalized 
with the meta-analysis and UKBB in ciliated epithelial cells. Additionally, 
the eQTL for KANSL1-AS1 antisense RNA was widely colocalized with the 
meta-analysis and UKBB across epithelial, immune and endothelial cell 

types. However, the expression levels and eQTL effect sizes of KANSL1 
and KANSL1-AS1 were highly correlated (Supplementary Figs. 22–24); 
both genes were ubiquitous but lowly expressed across cell types, 
impeding an exact evaluation of the cell type specificity of these effects.

When examining how these signals were colocalized in the 
bulk eQTL analyses, we found that the colocalization patterns of 

Alveolar type 1

Transitional alveolar type 2

Alveolar type 2

Proliferating—Epithelial

Secretory—SCGB1A1+/MUC5B+

Secretory—SCGB1A1+/SCGB3A2+

Secretory—SCGB3A2+

Ciliated

Di�erentiating ciliated

Basal

NK

CD4

CD8/NKT

Plasma

B cell

cDC2

moDC

Alveolar macrophage

Monocyte

Inflammatory monocyte
Monocyte-derived

macrophage

Mast

Proliferating—Immune

Lymphatic

Arteriole

Venule

SMC

Pericyte

int-eGenes

0

6,000

DEGs
(adjusted P <0.1)

Percentage of tested
int-eQTLs with motif

−log10(P)

0

15,000

int-eGene-DEG
overlap (%)

0

100

Lineage

Endothelial

Epithelial

Immune

Mesenchymal

0

20,000

40,000

0 10 20 30

Significant in no. of cell types

a b

d

f

ec

N
o.

 o
f t

op
 e

Q
TL

s
int-eQTLs

sc-eQTLs

NF1
half-site

PAX5

Sox10

Znf263

EWS:ERG
fusion

PU.1

Sox15

Sox17

Sox4

WT1

Zf
HMG

ETS CTF

Pair
ed,

homeobox

4
8.06.0

8 12 16

P < 2.22 × 10–16 P < 2.22 × 10–16

0

1

2

3

int-eQTL sc-eQTL

D
is

ta
nc

e 
to

 T
SS

 (M
b)

0

3

6

9

12

int-eQTL sc-eQTL

E�
ec

t s
iz

e

M
ea

n 
D

SP

0/0 0/1 1/1 0/0 0/1 1/1

−0.4

0

0.4

0.8

1.2
Alveolar type 1, LFSR = 0.004

0/0 0/1 1/1 0/0 0/1 1/1

0

0.2

0.4

Alveolar type 2, LFSR = 0.043

rs2003916

0/0 0/1 1/1 0/0 0/1 1/1

−0.5

0

0.5

1.0

1.5

Transitional alveolar type 2,
LFSR = 0.026

0/0 0/1 1/1 0/0 0/1 1/1

0

0.5

1.0

Secretory, SCGB3A2+,
LFSR = 0.040

ILD Control

Global

Multistate

Unique

int-eQTL

0 2010

Percentage of eQTLs in GTEx lung

Fig. 5 | Disease interaction eQTLs converge on pathways relevant to lung 
fibrosis. a, Histogram of the cell type sharing of the top int-eQTLs and the top 
non-int-eQTLs. b, Comparison of absolute distances to the eGene TSS and 
absolute effect sizes of the top sc-eQTLs (n = 50,506) and int-eQTLs (n = 83,596). 
Two-sided t-test P values are indicated. In the box plots, the lower and upper 
hinges correspond to the first and third quartiles. The upper whisker extends 
from the hinge to the largest value no further than 1.5 times the interquartile 
range (IQR) from the hinge; the lower whisker extends from the hinge to the 
smallest value at most 1.5 times the IQR of the hinge. c, Numbers of int-eGenes 

and differentially expressed genes (DEGs) between fibrotic and unaffected 
samples, and proportion of their overlap for each cell type included in the int-
eQTL analysis. d, Example of an int-eQTL for DSP. In the violin plots, the mean 
and two s.d. are indicated. e, Top transcription factor motifs enriched among int-
eSNPs associated with eGenes that were equally expressed between individuals 
with ILD and unaffected donors but exhibited differences in eQTL effect sizes. 
Transcription factors are grouped according to family on the x axis. f, Percentage 
of int-eQTLs, sc-eQTLs unique to a single cell type, multi-cell-type sc-eQTLs and 
globally shared sc-eQTLs that are also eQTLs in GTEx lung (P < 1 × 10−6).

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | April 2024 | 595–604 602

Article https://doi.org/10.1038/s41588-024-01702-0

MUC5B and DSP between GTEx lung and IPF GWAS reflected those 
of the cell-type-level analysis (Supplementary Fig. 15 and Supple-
mentary Table 8). MUC5B was significantly colocalized with the 
IPF GWAS meta-analysis and UKBB, but not with the East Asian IPF 
GWAS. DSP was colocalized in all three IPF GWAS. KANSL1, however, 
did not colocalize between the GTEx lung and any IPF GWAS. To 
assess to what extent the genetic and cell-type-specific regulatory 
architecture of IPF risk may be shared with other lung diseases, we 
colocalized the cell-type eQTL signals with the childhood-onset and 
adult-onset asthma GWAS28. The childhood-onset asthma colocaliza-
tion revealed a regulatory architecture distinct from IPF, with a lack 
of colocalization in epithelial cells and most of the significant colo-
calizations being specific to immune cells, particularly monocytes and 
monocyte-derived macrophages, which may shape some of the clinical 
and inflammatory features of asthma29,30. These results highlight the 
broader utility of this dataset in the investigation of other lung traits  
and diseases.

Discussion
In this study, we present a characterization of regulatory genetic vari-
ants across major cell types in the human lung, using scRNA-seq to 
identify eQTLs at cell-type resolution. In total, we characterized eQTLs 
across 38 different cell types identifying cis-eQTLs in over 6,000 genes. 
Building on bulk eQTL studies, such as the GTEx project2, which sought 
to characterize differences in gene regulatory architecture across tis-
sues, we used a multivariate adaptive shrinkage approach to robustly 
identify shared and specific eQTLs across cell types2. In addition to the 
majority of eQTLs that were shared across cell types, we identified thou-
sands of eQTLs that were limited to a subset or single cell type. These 
eQTL classes were enriched among chronic lung disease GWAS loci and 
DEGs in fibrotic lungs, suggesting that context-specific gene regula-
tory mechanisms are important but yet, to date, largely unrecognized 
contributors to the mechanisms underlying chronic lung diseases.

Highlighting the power of this approach, we demonstrate that 
many of the eQTLs identified in this study were not eQTLs in bulk 
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data from primary lung tissue (Fig. 5f). This was particularly true of 
eQTLs limited to a single cell type (11.7% significant in bulk) and dis-
ease interaction eQTLs, which were far less likely to be shared across 
cell types (13.4% significant in bulk). Both of these classes of eQTLs 
tended to be further away from the TSS than global and multistate 
eQTLs suggesting that these loci may be disrupting enhancers rather 
than promoters (Figs. 4a and 5b). This observation would be con-
sistent with the cell type specificity of these eQTLs and would distin-
guish them from eQTLs identified in bulk studies, which are strongly 
enriched for disrupting promoter regions. Indeed, some work sug-
gested that common eQTLs (enriched near promoters) are less likely 
to have functional relevance1,31,32. In addition to being more distal from 
the TSS, cell-type-specific eQTLs tended to have larger effect sizes 
(Figs. 4a and Fig. 5b). At present, it is uncertain whether the difference 
in effect size is due to statistical power to identify these associations or 
if cell-type-specific eQTLs inherently exhibit larger effect sizes. As this 
class of eQTL is the least likely to benefit from the mashr12 approach, 
it seems plausible that we only have statistical power to identify those 
with large effects. If this is the case, future single-cell eQTL studies with 
increased sample numbers and cell type representation from rare cell 
populations are likely to identify a substantial number of additional 
cell-type-specific and context-specific eQTLs.

Over the past 10 years, there has been an increased appreciation 
for the degree to which eQTLs may be context-specific, starting first 
with tissue type, then to functional and environmental contexts, and 
finally to cell type23,33–39. The results of this study suggest that sc-eQTL 
studies have the power to elucidate this context specificity and that 
they will better recover eQTLs associated with disease states or envi-
ronmental perturbations because these effects are less likely to be 
shared across cell types within a tissue.

In addition to a general characterization of eQTLs in the lung, this 
study is uniquely positioned to explore the interplay between genetic 
variation and the molecular underpinnings of chronic lung diseases 
including pulmonary fibrosis. Focusing first on the known risk loci iden-
tified in various GWAS studies, we found eQTLs to be enriched among 
GWAS risk loci regardless of class (Fig. 6). These enrichments were simi-
lar to those found in the bulk eQTL analysis from the human lung (Fig. 6); 
however, using cell-type-level associations, we were able to partition the 
function of these risk variants into discrete cell types. Indeed, we found 
that risk variants were most likely to be eQTLs in alveolar type 2 cells, 
followed by a number of cells from the myeloid lineage, including both 
resident and recruited macrophages (Fig. 6 and Supplementary Table 7). 
Using a more formal colocalization analysis, we found four GWAS loci 
with strong support for a shared causal variant with an eQTL (compared 
to seven colocalizations in the bulk eQTL data), for which we identified 
the likely cell type in which these risk variants are acting (Fig. 6). Our find-
ings align with recent insights into the cellular and regulatory drivers of 
ILD. Epithelial cell types have a central role in driving alveolar remodeling 
in IPF40. Indeed, in a GWAS colocalization analysis, we found that the top 
IPF risk variants flanking MUC5B and DSP regulated the expression levels 
of their targets in specific epithelial cell types.

In addition to assessing the effect of known risk loci on gene expres-
sion traits, we also more directly examined how genetic variation may 
alter key regulatory processes involved in disease. Turning back to the 
disease interaction eQTL analysis, enabled by the collection of a cohort 
consisting of both affected and unaffected individuals, we assessed 
how these context-specific eQTLs may further drive disease processes. 
Roughly half of the interaction eQTLs were driven by differences in 
overall mean expression between the disease-affected and control sam-
ples. In the case of disease-emergent expression difference (expression 
increased in the disease-affected samples), loci that further upregulate 
gene expression may propagate additional molecular dysfunction. 
Focusing on the set of interaction eQTLs with similar mean expression 
across disease-affected and control samples, we found the loci to be 
enriched for TFBS associated with key biological processes related 

to ILD. For example, we found enrichment for WT1 (ref. 20) and SOX 
family members21,22, which previous experimental evidence connected 
to fibroblast activation and proliferation in the lung. The eQTLs that 
disrupt key binding sites probably further propagated the molecular 
dysregulation observed in ILD by modulating the binding efficiency 
of transcription factors and altering the expression of their direct 
and downstream target genes. Of note, int-eQTLs were not enriched 
for overlaps with risk variants, as anticipated based on the presumed 
requirement for disease-associated contextual cues for these variants 
to manifest their effects. We postulate that these context-specific eQTLs 
may have a role in disease progression rather than initiation. Again, 
these results highlight the importance of identifying context-specific 
eQTLs that are best captured using single-cell approaches.

Taken together, our study demonstrates the powerful application 
of single-cell genomics to study genetic regulation of gene expres-
sion in complex, solid, primary human tissues. Integrating scRNA-seq 
data from control and disease-affected lung samples with genetic 
data provides insights into the cell-type-specific function of risk vari-
ants for ILD and highlights int-eQTLs as a class of regulatory variants 
that contribute to disease pathobiology. Future work combining 
single-cell multiomic assays, healthy and disease-affected samples, 
and context-specific analysis methods, will be important to understand 
the interplay of dysfunctional genetic regulation and cellular contexts 
in complex human disease.
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Methods
Compliance with ethical regulations
This study was approved by the local institutional review boards (IRBs) 
(Vanderbilt IRB nos. 060165 and 171657; Western IRB no. 20181836). 
Written informed consent was obtained from all participants.

Participants, samples and tissue processing
The scRNA-seq data presented in this article include previously pub-
lished41 and unpublished samples (Supplementary Table 1). Lung tissue 
samples were processed as described previously by Habermann et al.8. 
Briefly, ILD tissue samples were obtained from lungs removed at the 
time of lung transplantation at either the Vanderbilt University Medi-
cal Center (VUMC) or the National Thoracic Institute. Control tissue 
samples were obtained from lungs declined for organ donation either 
at the Donor Network of Arizona or VUMC. Tissue sections were taken 
from multiple peripheral (within ~2 cm of the pleural surface) regions 
in each lung. For ILD-affected lungs, representatively diseased areas 
were selected on the basis of preoperative chest computed tomogra-
phy, while for control lungs, the most normal-appearing region was 
identified by gross inspection and selected for biopsy. For ILD-affected 
lungs, diagnoses were determined according to the American Thoracic 
Society/European Respiratory Society consensus criteria42. No statis-
tical methods were used to predetermine sample sizes but inclusion 
thresholds were determined to maximize the ability to map eQTLs with 
confidence across many cell types (Supplementary Note 2). Studies 
were approved by the local IRBs.

Tissue samples were digested in either collagenase I/dispase II 
(1 μg ml−1) or Miltenyi Multi Tissue Dissociation Kit using a gentleMACS 
Octo Dissociator (Miltenyi Biotec). Tissue lysates were serially filtered 
through sterile gauze, 100-μm and 40-μm sterile filters (Fischer). The 
resulting suspensions then underwent cell sorting using serial columns 
(Miltenyi MicroBeads, CD235a and CD45) or fluorescence-activated 
cell sorting at VUMC or the Translational Genomics Research Institute 
(TGen). CD45− and C45+ populations were mixed 2:1 in samples processed 
at VUMC and used to generate the scRNA-seq libraries. At TGen, calcein 
acetoxymethyl was used to stain live cells; 10,000–15,000 live cells  
were sorted directly into the 10X reaction buffer and transferred to the 
10× 5′ chip A (10X Genomics).

scRNA-seq library preparation and next-generation 
sequencing
scRNA-seq libraries were generated using the 10X Chromium plat-
form 5′ library preparation kits (10X Genomics) according to the 
manufacturer’s recommendations and targeting 5,000–10,000 cells 
per sample. From 12 donors, multiple tissue samples were processed 
and libraries were generated from separate biopsies taken from the 
same lung to account for regional heterogeneity (Supplementary 
Table 1). Next-generation sequencing was carried out on an Illumina 
NovaSeq 6000 or HiSeq 4000. The resulting sequenced data were 
filtered to retain reads with a read quality greater than 3; CellRanger 
Count v.3.0.2 (10X Genomics) was used to align reads onto the GRCh38  
reference genome.

Data integration, clustering, cell type annotation and 
differential expression
scRNA-seq data were processed and analyzed using Seurat v.4  
(ref. 10). CellRanger Count outputs were imported to create a Seurat 
object for each sample. The sample-specific objects were merged 
and the proportions of reads arising from mitochondrial genes were 
calculated for each sample. The merged object was filtered to retain 
samples with more than 1,000 identified features or less than 25% of 
mitochondrial reads.

Samples sequenced across 24 batches were integrated using recip-
rocal PCA (rPCA) as follows: the merged object was split by flowcell and 
the count data in each batch-specific object was normalized; variable 

features were identified for each object and integration features across 
objects were selected with SelectIntegrationFeatures(); data in each 
batch-specific object was scaled and underwent PCA dimensionality 
reduction using 2,000 variable features. rPCA integration was car-
ried out using 3,000 integration anchors and four reference batches  
(6, 12, 18, 24). PCA dimensionality reduction on the integrated data was 
performed using 3,000 variable features. To determine the optimal 
number of principal components to identify neighbors and to con-
struct the uniform manifold approximation (UMAP), we determined 
the difference between the variation explained by each principal com-
ponent and the subsequent principal component and identified the 
last point where the percentage change was more than 0.1%. A shared 
nearest neighbor graph was constructed with k = 20; clusters of cells 
were identified using the modularity optimization-based clustering 
algorithm43 implemented in Seurat v.4.

The resulting clusters were divided into four major cell subgroups 
based on marker gene expression: PTPRC+ for immune cells; EPCAM+ 
for epithelial cells; PECAM1/+PTPRC− for endothelial cells; and PTPRC−/
EPCAM−/PECAM1− for mesenchymal cells. Each subgroup-specific 
object underwent the same dimensionality reduction and cluster-
ing approach as described above. We removed doubles using a man-
ual approach, as described previously8,41, by identifying clusters of 
cells that expressed markers from multiple lineages8,41. Our previous 
work found this method to be more conservative than automated 
approaches. Indeed, when applying DoubletFinder v.2.0 (ref. 44) to 
one lineage (epithelial cells), DoubletFinder recovered 8,230 dou-
blets (3.7%), whereas the marker-based approach identified 18,588 
doublets (8.5%). After manual doublet removal and reclustering, 
subgroup-specific objects were further annotated for specific cell 
types based on known marker genes (Supplementary Table 2).

For differential gene expression testing, we used the R/presto 
implementation of the Wilcoxon rank-sum test (wilcoxauc)45.

Low-pass WGS, genotyping and imputation
Flash-frozen tissue in DNA/RNA Shield was homogenized using a bullet 
blender. Genomic DNA was extracted using the Zymo Quick-DNA/RNA 
Microprep Plus Kit. Library preparation and low-pass WGS were carried 
out at TGen or by Gencove (Supplementary Table 9). At TGen, libraries 
were prepared using PCR-free Watchmaker Kits (Watchmaker Genom-
ics) with a 200-ng input. Genomes were sequenced on a NovaSeq sys-
tem at low coverage (typically 0.4–1×). The resulting sequenced data 
were processed and imputed using Gencove’s imputation platform.

Pseudobulk cell type eQTL mapping
For eQTL mapping, cells with more than 20% of reads mapping to the 
mitochondrial genes were removed (466,989 cells remained). Mapping 
was only performed on cell types with at least 40 donors with at least 
5 cells of that cell type (38 cell types met these criteria). Mitochon-
drial genes, genes encoding ribosomal proteins (downloaded from  
https://www.genenames.org/cgi-bin/genegroup/download?id=1054
&type=branch), genes expressed in less than 10% of cells in the study 
and genes with a mean count across all cells less than 0.1 were excluded, 
resulting in 6,995 genes for eQTL mapping.

Pseudobulk cis-eQTL mapping was performed according to the 
guidelines by Cuomo et al.11. For each cell type, raw counts were normal-
ized and log2-transformed using scran46 and mean-aggregated to get a 
single value for each gene for each donor for each cell type. Donors with 
fewer than five cells for a cell type were excluded from eQTL mapping 
for that cell type; only cell types with at least 40 donors matching this 
criteria were included (maximum donors = 113). Biallelic, autosomal 
SNPs were filtered to include SNPs with an MAF greater than 5%, Hardy–
Weinberg equilibrium P > 1 × 10−6, and further pruned to remove highly 
correlated SNPs (--indep-pairwise 250 50 0.9) using plink2 (ref. 47),  
resulting in ~1.9 million SNPs. We tested for associations for SNPs within 
1 Gb upstream and downstream of the gene body.
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Linear mixed models were used to map cis-eQTLs using the LIMIX_
qtl framework (https://github.com/single-cell-genetics/LIMIX_qtl)48. 
Expression levels for each gene were quantile-normalized to fit a nor-
mal distribution (--gaussianize_method). To control for unwanted 
technical effects, the first 20 cell-type expression principal compo-
nents were regressed out before model fitting (--regress_covariates). 
To account for variance due to population structure, we included 
the identity-by-descent relationship matrix generated by apply-
ing plink2--make-rel on the filtered SNP data as a random effect. To 
account for differences in cell type abundance across donors, we 
included the number of cells aggregated (1/nCells) as a second ran-
dom effect, using the random effect weighting approach described by  
Cuomo et al.11. Random effects were marginalized from the model 
using the low-rank optimization method (--low_rank_random_effect) 
described by Cuomo et al.49.

Joint cell-type eQTL analysis
Joint analysis of the LIMIX estimated effect sizes and their correspond-
ing standard errors across all 38 cell types was performed using mul-
tivariate adaptive shrinkage in R (mashr v.0.2 (ref. 12)) according to 
the approach outlined in the ‘eQTL analysis outline’ vignette from the 
authors (https://stephenslab.github.io/mashr/articles/eQTL_outline.
html). In this approach, a weighted combination of learned and canoni-
cal covariance matrices that describe patterns of eQTL sparsity and 
sharing across cell types is used as a prior for generating adjusted sum-
mary statistics. The data-driven covariance matrices were estimated 
from a subset of strong associations with an LFSR lower than 0.1 in at 
least one cell type (n = 487), calculated using adaptive shrinkage in R 
(ashr v.2.2 (ref. 50)). Default canonical covariance matrices were used, 
representing equal effect sharing across cell types, the top five principal 
components from the strong associations and extreme deconvolution 
matrices obtained from those principal components. The model was 
fitted to a random subset of 10,000 SNP–gene associations and then 
applied to all associations tested.

Assessing significance, sharing and eQTL classification
The LFSR calculated by mashr was used to assess significance. To 
further reduce the impact of differential power on assessing shar-
ing of eQTLs across cell types, if an eQTL was significant in one cell 
type (LFSR ≤ 0.05), then it would be considered significant in other 
cell types at a less stringent threshold (LFSR ≤ 0.1). An eQTL was con-
sidered shared in a pairwise comparison between two cell types if 
the eQTL was significant in both cell types and the estimated effect 
size was within a factor of 0.5. An eQTL was classified as global if it 
was significant in at least 36 of the 38 cell types (31 of 33 cell types for 
int-eQTLs). This two-cell-type buffer was included to reduce the impact 
of low-powered cell types on our categorization. eQTLs that were 
significant in only one cell type were classified as unique and eQTLs 
significant in 2–36 cell types (2–31 for int-eQTLs) were considered multi- 
cell-type eQTLs.

To simplify plotting of the top eQTLs (Fig. 4), a pruning step was 
included, where for each gene, if there was a single top eQTL, that 
eQTL was retained. If there were two top eQTLs, the Euclidean distance 
between the centered absolute values of the estimated effect sizes 
across cell types for the two eQTLs were compared. If the distance was 
greater than the set threshold (distribution = 0.2), both were retained. 
If the distance was less than the threshold then the one that was signifi-
cant in more cell types was retained. Finally, if there were more than 
three top eQTLs, the pairwise Euclidean distance between the centered 
absolute values of the estimated effect sizes for each pair of top eQTLs 
was calculated. If all pairwise distances were above the threshold, all 
were retained. Otherwise, hierarchical clustering was performed and 
the tree was cut using cutree at a k between 2 and 5, which maximized 
the silhouette width. For each cluster, the top eQTL that was significant 
in most cell types was retained.

Disease interaction cell-type eQTL mapping
To test for disease interaction eQTL effects, cell types were required to 
have at least ten control and ten ILD donors with at least five cells of that 
cell type, resulting in KRT5−KRT17+, pDC, cDC1, alveolar fibroblast and 
mesothelial cell types being excluded from the interaction eQTL analy-
sis. SNPs were further filtered to remove those with an MAF < 5% in either 
the control or ILD donor populations (1.77 million SNPs remained). 
Interaction effects were tested using the run_interaction_QTL_analysis 
from LIMIX_qtl. Random effects were handled as described above for 
the eQTL mapping analysis. In the interaction term with SNP effect, we 
included the binary disease status (ILD versus unaffected). Fixed effects 
(for 20 principal components) were included but not regressed out  
before modeling because disease status was strongly correlated with 
some principal components. The results from this analysis were pro-
cessed using mashr, with significance calling, as described above, for 
the eQTL analysis. For each cell type, we further pruned int-eQTLs to 
retain associations where the observed eSNP MAF for individuals with 
ILD and unaffected donors for the given cell type was greater than 0.05.

Colocalization with GWAS and GTEx
Colocalization analysis was carried out between the cell type eQTL, 
GTEx lung eQTL and three IPF GWAS. The UKBB24 and East Asian25 IPF 
GWAS summary statistics were downloaded from the GWAS Catalog26. 
The discovery samples of these studies consisted of 1,369 cases with IPF, 
14,103 cases with chronic obstructive pulmonary disease and 435,866 
controls, and 1,046 cases with East Asian ancestry and 176,974 controls, 
respectively. Summary statistics from an IPF GWAS meta-analysis9 
leveraging data from three studies51–53 were downloaded after gaining 
access by submitting a request (https://github.com/genomicsITER/
PFgenetics)54. The meta-analysis consisted of 2,668 cases with IPF with 
European ancestry and 8,591 controls.

Additionally, GWAS on adult-onset and childhood-onset asthma28 
(26,582 adult cases with European ancestry, 13,962 child cases and 
300,671 controls) were downloaded from the GWAS Catalog and 
included for comparison. For comparative analyses with bulk eQTL, 
GTEx lung, whole-blood and brain cortex eQTLs, summary statistics 
were downloaded from the GTEx Google Cloud bucket (https://console.
cloud.google.com/storage/browser/gtex-resources)55.

Bayesian colocalization analysis was performed using R/coloc v.5 
(ref. 56). For the pseudobulk cell-type eQTLs, mashr LFSR was used in 
place of the nominal eQTL P value. A total of 2,092 genes, including 
the multi-cell-type eQTLs presented in Fig. 4 and 103 IPF GWAS variant 
flanking genes, were selected for the colocalization analysis; for each 
gene, colocalization testing was carried out between datasets that 
shared 100 or more variable (MAF > 0, <1) SNPs. Significantly colocal-
ized loci were selected based on the posterior probability for a single 
shared causal variant of 0.6 or greater.

Enrichment testing
We tested for the enrichment of the clusters of eQTLs in Fig. 4 among 
GO terms using a Fisher’s exact test as implemented in R/TopGO 
v.2.46.0 (ref. 57). All genes included in the eQTL analysis were used 
as a background set. A P value threshold of 0.01 was used to select 
significant terms.

We used a Fisher’s exact test to test for the enrichment of the vari-
ous classes of sc-eQTLs (all eQTLs, globally shared, multistate, unique 
to a single cell type, k1–k7 in Fig. 4) among IPF GWAS risk variants. From 
the 1,617,891 SNPs tested for in the eQTL analysis and included in the 
IPF GWAS meta-analysis, a set of 473 GWAS variants was selected with 
a relaxed genome-wide nominal P value threshold of 1 × 10−6. A null 
distribution of nonsignificant eQTLs was generated using the default 
rejection method of R/nullranges58 v.3.16 to match the observed distri-
bution of absolute distances to the TSS among the significant eQTLs.

To test whether the various classes of regulatory variants detected 
in the sc-eQTL analyses disrupted the binding of known transcription 
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factors, we used HOMER59 v.4.11 to analyze eQTL positions for the 
enrichment of transcription factor binding site motifs. findMotif-
sGenome.pl with a default region size of 200 bp was used to detect 
enriched motifs. In each analysis, a null set of nonsignificant eQTLs 
with a matched distribution of distances to the TSS was used as a 
background. In the TFBS enrichment analysis of the int-eQTLs, the 
non-int-eQTLs were used as a background set. A q-value threshold of 
0.05 was used to select significant motifs.

Statistics and reproducibility
The statistical analyses are detailed in the Methods and figure legends 
and were performed using R v.4.1.1 and v.4.3.0.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed 10X Genomics data, Seurat objects, mean-aggregated 
expression matrices and genome-wide LIMIX and mashr eQTL statistics 
can be found on the Gene Expression Omnibus under accession no. 
GSE227136. Genotype data are available on the database of Genotypes 
and Phenotypes under accession no. phs003521.

Code availability
The code to reproduce the results presented in this study is available 
via Zenodo at https://doi.org/10.5281/zenodo.10459632 (ref. 60).
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