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Single-cell multi-ome regression models 
identify functional and disease-associated 
enhancers and enable chromatin potential 
analysis

Sneha Mitra    1, Rohan Malik    2, Wilfred Wong1,3, Afsana Rahman    4, 
Alexander J. Hartemink    5,6,7, Yuri Pritykin    1,8,9, Kushal K. Dey    1  & 
Christina S. Leslie    1 

We present a gene-level regulatory model, single-cell ATAC + RNA linking 
(SCARlink), which predicts single-cell gene expression and links enhancers 
to target genes using multi-ome (scRNA-seq and scATAC–seq co-assay) 
sequencing data. The approach uses regularized Poisson regression on 
tile-level accessibility data to jointly model all regulatory effects at a  
gene locus, avoiding the limitations of pairwise gene–peak correlations  
and dependence on peak calling. SCARlink outperformed existing  
gene scoring methods for imputing gene expression from chromatin 
accessibility across high-coverage multi-ome datasets while giving 
comparable to improved performance on low-coverage datasets.  
Shapley value analysis on trained models identified cell-type-specific gene 
enhancers that are validated by promoter capture Hi-C and are 11× to 15×  
and 5× to 12× enriched in fine-mapped eQTLs and fine-mapped genome- 
wide association study (GWAS) variants, respectively. We further show that 
SCARlink-predicted and observed gene expression vectors provide a robust 
way to compute a chromatin potential vector field to enable developmental 
trajectory analysis.

Multi-ome single-cell sequencing of chromatin accessibility and gene 
expression—where both scATAC–seq and scRNA-seq are applied to the 
same individual cells—has paved the way for computational methods 
that attempt to link enhancers to genes1,2, infer gene regulatory net-
works3–5 and resolve developmental trajectories based on the concept 
of chromatin potential, which proposes that accessibility at a locus 

precedes gene expression during differentiation1. At the most elemen-
tary level, several approaches exploit joint measurements of ATAC and 
RNA in single cells to identify pairwise correlations between individual 
accessible regions—defined as peaks or domains of open chromatin 
(DORCs)—and gene expression levels for enhancer–gene linking1,6. For 
example, a recent approach uses Poisson regression to test for pairwise 
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bone marrow mononuclear cells (BMMCs8; mean UMI counts: 3,278, 
mean reads in TSS: 7,134) and developing human cortex9 (mean UMI 
counts: 6,344, mean reads in TSS: 6,874); datasets with higher sparsity 
are mouse skin1 (mean UMI counts: 1,244, mean reads in TSS: 707), 
pancreas10,11 (mean UMI counts: 6,445, mean reads in TSS: 1,830) and 
pituitary gland12 (mean UMI counts: 4,786, mean reads in TSS: 4,615; 
Extended Data Fig. 1). We ran the model on a subset of the top 5,000 
most variable genes for each dataset, filtered based on the sparsity 
of the gene expression vector (Methods). After filtering, we obtained 
1,250 genes for PBMC, 1,655 genes for BMMC, 393 genes for mouse 
skin, 1,201 genes for the developing human cortex, 784 genes for 
the pancreas and 1,221 genes for the pituitary gland (Supplementary 
Table 1). For each gene-level model, we used Spearman correlation to 
compare the predicted gene expression to observed gene expression 
on held-out cells.

We compared SCARlink against other available methods to predict 
single-cell gene expression from chromatin accessibility. One such 
method is the ArchR gene score, which aggregates accessibility across 
the gene body and flanking regions using an exponentially decaying 
function to downweight accessibility farther away from the gene. 
SCARlink significantly outperformed the ArchR gene score across 
all high-coverage datasets based on correlation with ground truth on 
held-out cells (one-sided signed-rank test over genes, P < 8.35 × 10−114on 
PBMC, P < 3.24 × 10−200on BMMC and P < 1.15 × 10−61on developing 
human cortex). We also found that SCARlink produced significantly 
higher correlations for a large fraction of individual genes in higher 
coverage datasets (57.0% of genes in PBMC, 56.8% of genes in BMMC 
and 24.4% of genes in the developing cortex, at false discovery rate 
(FDR) < 0.05) as assessed by pairwise significance of correlation  
(Methods; Fig. 1b–d).

We determined through count downsampling of PBMC that 
the sparsity of scATAC–seq and/or scRNA-seq substantially affects 
model performance (Extended Data Fig. 2). Thus, for sparser data-
sets (Extended Data Fig. 1), SCARlink performed comparably to the 
ArchR gene score on pancreas and pituitary (one-sided signed-rank 
test is not significant in either direction) while outperforming it on 
mouse skin (P < 3.7 × 10−09, one-sided signed-rank test), albeit with 
fewer genes showing significantly better correlation (Extended Data 
Fig. 3a–c and Supplementary Table 1). In the human cortex multi-ome 
data, SCARlink outperformed another method of gene score predic-
tion called ChrAccR that aggregates the accessibility in peaks near the 
TSS (P < 1.3 × 10−93, one-sided signed-rank test; Extended Data Fig. 3d).

DORC scores are computed by aggregating accessibility in peaks 
lying within 50 kb and 500 kb of the TSS that individually correlate 
with gene expression1. We found that our model yields predictions 
that are more correlated with expression than DORC scores in mouse 
skin (P < 3.1 × 10−18, one-sided signed-rank test; significantly better 
performance on 38.4% of genes; Fig. 1e), potentially because SCARlink 
is modeling the impact of chromatin accessibility across all tiles at 
once. In addition, we found that SCARlink predictions are robust to 
downsampling of the number of cells, yielding comparable predic-
tions with at least 50% of the total number of cells across most datasets 
(Extended Data Fig. 4).

As an example to study the linkage between chromatin accessibil-
ity and gene expression, we used SCARlink to model the regulation 
of ZEB2 in the PBMC dataset (Fig. 1f). The learned regression coeffi-
cients across all the tiles (Fig. 1f, bottom) identify candidate functional 
enhancers across the genomic locus for ZEB2. Note that while SCARlink 
does not use cell type or cluster annotations as input, knowledge of 
clusters can be used to generate pseudobulk visualizations and thus 
interpret the regression coefficients. We also analyzed Lef1 from mouse 
skin multi-omic SHARE-seq data and found distal regions where high 
regression coefficients indicate that accessibility is correlated with 
transcription but which are not annotated as DORCs (near chromo-
some (chr)3:130,900,000; Fig. 1g). This highlights the advantage of 

correlation between peak accessibility and gene expression while also 
modeling batch or cell-specific covariates, with the goal of linking 
noncoding genetic variants that reside in such peaks to target genes2. 
Meanwhile, standard scATAC–seq analysis methods use simple scoring 
schemes to transform the data into a scRNA-like readout, analogous to 
gene expression, based on aggregating chromatin accessibility near a 
gene promoter or across a genic locus, comprising the gene body and 
a fixed window around it, to obtain an imputed gene expression value. 
These imputation scores enable joint embedding of independently col-
lected scATAC–seq and scRNA-seq data or transfer of cell-type cluster 
labels between the two7.

Motivated by these ideas, we propose single-cell ATAC + RNA 
linking (SCARlink), a gene-level predictive model for single-cell/
single-nucleus multi-ome data that predicts the expression of a gene 
from the accessibility of its genomic context in single cells (Fig. 1a). 
Unlike pairwise correlation approaches that assess individual peak–
gene links independently, our model captures the fact that elements 
both within the genic locus (for example, intronic enhancers) and distal 
elements in flanking regions (±250 kb by default) all jointly regulate the 
expression of the gene. We train the model using regularized Poisson 
regression on tile-level data to facilitate integration with standard 
preprocessing pipelines like ArchR6 and to avoid summarizing data as a 
peak atlas, which not only requires additional steps for peak calling over 
clusters but may miss events in rarer cell types. The regression coef-
ficients across the genomic context can then be interpreted as identi-
fying locations of putative candidate functional enhancers across the 
single-cell dataset. Moreover, we can use Shapley values, a well-known 
feature attribution method, to identify cell-type-specific enhancers, 
that is, genomic tiles that are important for predicting expression 
across cells from a given cluster or annotation. Therefore, although 
SCARlink is formulated as a gene expression prediction problem, we 
can use the learned model parameters to infer enhancer–gene links 
in a cell-type-specific manner. Below, we show that our model outper-
forms existing methods for predicting single-cell gene expression from 
accessibility and correctly identifies cell-type-specific enhancers, as 
validated by promoter capture Hi-C (PCHi-C). We further show that the 
regulatory regions determined using Shapley values from our modeling 
enrich for fine-mapped noncoding genome-wide association study 
(GWAS) and expression quantitative trait loci (eQTL) variants. Finally, 
we demonstrate that using gene-level models for a set of developmen-
tally regulated genes yields a robust implementation of the chromatin 
potential trajectory inference method.

Results
SCARlink accurately predicts gene expression and identifies 
putative enhancers
SCARlink uses a regularized Poisson regression model on single cells to 
predict gene expression from chromatin accessibility. The chromatin 
accessibility is used as input in the form of nonoverlapping 500 bp tiles 
spanning a region from 250 kb upstream to 250 kb downstream of the 
gene body by default (Fig. 1a). This genomic context is large enough to 
capture distal intergenic as well as intronic enhancers for most genes 
but can be extended or shortened as preferred. Because SCARlink is 
a gene-level model and genes are of variable length, the number of 
input tiles is different for every gene. For example, for genes CCR7 
and ZEB2, 11,703 bp and 140,502 bp long, the number of input tiles 
was 1,024 and 1,282, respectively. We also constrain the model to learn 
positive regulatory elements by forcing the regression coefficients to 
be non-negative. While this is a limitation for identifying repressive 
regulatory elements, we found the regression coefficients to be more 
interpretable when we focused on enhancers.

We applied SCARlink to multi-omic datasets of different levels 
of sparsity. Datasets with lower levels of sparsity include peripheral 
blood mononuclear cells (PBMCs) from 10X Genomics (mean UMI 
counts: 4,172, mean reads in TSS (transcription start site): 7,682), 
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Fig. 1 | SCARlink accurately predicts single-cell gene expression from 
chromatin accessibility. a, The model takes as input single-cell ATAC–seq 
counts at a genic locus, aggregated over 500 bp tiles spanning 250 kb upstream/
downstream and including the gene body, and uses regularized Poisson 
regression to predict the gene’s single-cell expression; both the scATAC–seq 
and scRNA-seq readouts are obtained from multi-omic sequencing. The learned 
regression coefficients indicate the importance of each tile for predicting gene 
expression. b–e, Scatterplots showing Spearman correlation of predicted 
and observed gene expression for each gene using SCARlink versus Spearman 
correlations using existing methods. Comparisons are performed against ArchR 
gene score predictions on 10× PBMC (1,250 genes; b), BMMC8 (1,655 genes; c) 
and developing human cortex9 (1,201 genes; d); and against DORC gene score 

predictions (e) on the mouse skin1 dataset (380 genes). f, Example model output 
for ZEB2 from PBMC multi-ome data (n = 9,460 cells; Supplementary Table 1), 
showing regression coefficients at bottom and aggregated scATAC- (left) and 
scRNA-measured expression (right) by cell type. g, Example model output and 
comparison with annotated DORCs (shown using blue arcs below the coefficient 
panel) for Lef1 from mouse skin SHARE-seq data (n = 33,314 cells; Supplementary 
Table 1). ρ indicates the Spearman correlation between predicted and observed 
gene expression. The gene expression depicted using violin plots in f and g are 
normalized to counts per 10,000. The boxplots inside the violin plots for gene 
expression in f and g are centered on the median, bounded by the quartiles, with 
the whiskers depicting the remaining distribution. This image is created with 
BioRender.com.
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SCARlink in using accessibility across all tiles for the prediction of 
gene expression.

Shapley analysis identifies cell-type-specific SCARlink 
enhancers
The regression coefficients generated using SCARlink indicate the 
overall importance of the accessibility in each tile for predicting gene 
expression across cells in the dataset. To quantify the contribution 
of each tile in the window for every cell type, we computed standard-
ized average Shapley values per cell type (see Methods for compu-
tation of approximate Shapley scores under the SCARlink model). 
This allowed us to identify tiles as putative regulatory regions for the 
modeled gene in a particular cell type. We observed that predicted 
regulatory elements are most enriched within or in close proximity 
to the gene body (∼25 kb) and decrease in prevalence in distal regions  
(Extended Data Fig. 3e).

Because active enhancers are known to physically interact 
with promoters to enable transcription13, we hypothesized that 
SCARlink-predicted regulatory regions would be enriched for 3D inter-
actions with the promoter of the modeled gene. PCHi-C is a chromo-
some conformation capture assay that identifies promoter-interacting 
genomic regions using a genome-wide promoter bait library. We, 
therefore, sought to validate SCARlink-predicted regulatory regions 
across a subset of PBMC cell types using available hematopoietic 
cell PCHi-C14. We identified PCHi-C interactions in relevant cell types 
using a generalized additive model (Methods) and compared them to 
SCARlink-identified regions in T cell subpopulations, monocytes and 
B cells in the PBMC multi-omic data.

As one example, we compared our Shapley values to PCHi-C inter-
actions for the gene HLA-DQB1 (Fig. 2a). We found that PCHi-C interac-
tions in distal tiles display higher Shapley values than noninteracting 
tiles, particularly for B cells, a cell type in which HLA-DQB1 is highly 
expressed (Fig. 2a). We then compared the Shapley values of tiles with 
and without PCHi-C interactions for highly expressed genes in each 
cell type (Methods) and confirmed that Shapley values for interact-
ing tiles are substantially higher than noninteracting tiles (Fig. 2b and 
Supplementary Table 2).

Predicted enhancers are enriched for fine-mapped GWAS and 
eQTL variants
Next, we assessed whether the enhancer tiles predicted by SCARlink 
can be used to prioritize genetic variants causally associated with 
gene regulation and disease etiology. To this end, we first filtered 
a set of gene-linked tiles for each gene and cell type based on the 
significance of an approximate Shapley score (Methods; Fig. 3a). We 
observed that these predicted gene-linked tiles were sensitive to the 
sparsity of the dataset (Extended Data Fig. 5a). We then performed 
an enrichment analysis of the resulting set of gene-linked tiles with 
respect to statistically fine-mapped eQTLs (posterior inclusion prob-
ability (PIP) > 0.5) for the corresponding genes in the closest matched 
GTEx tissues15, and with respect to 17,769 statistically fine-mapped 
GWAS variants (PIP > 0.2) across 82 UK Biobank traits16 (average, 
n = 334,803; Supplementary Table 3) in PBMC, pancreas and pituitary 
gland (Methods). SCARlink gene-linked tiles in the three multi-ome 
datasets show 5.5× to 7.5× enrichment of fine-mapped GWAS vari-
ants with respect to a set of common variants matched by linkage 

disequilibrium (LD), minor allele frequency (MAF) and gene dis-
tance in the top 15,000 predicted gene-linked tiles (Supplementary 
Table 4) and outperformed a standard pairwise peak–gene linking 
implemented by ArchR. The enrichment increases with higher PIP 
thresholds (Fig. 3b). Moreover, the enrichment of the GWAS variants 
is individually the same or higher for 79% of the 82 traits in SCARlink 
gene-linked tiles (Extended Data Fig. 5b). Upon subsetting by distance 
annotations, SCARlink enrichment is equal or higher than that of 
ArchR for a large fraction of traits in promoter-proximal and distal 
regions (Extended Data Fig. 5b).

Next, we performed comparative disease heritability analysis of 
SCARlink-linked tiles/peaks and ArchR-linked peaks for the same set 
of genes using the stratified LD score regression (S-LDSC) method17,18; 
we assessed performance using the heritability enrichment and stand-
ardized effect size (τ*) metrics (Methods). In our marginal analysis, 
conditional on 97 baseline-LD (v2.2) annotations comprising of cod-
ing, conserved, epigenomic and LD-related annotations, SCARlink 
showed 1.2× higher meta-analyzed heritability enrichment compared 
to ArchR across 104 diseases and traits; results were concordant when 
conditioning on 53 baseline annotations19 and 17 LD- and MAF-related 
annotations20 (Methods; Extended Data Fig. 5c and Supplementary 
Tables 5 and 6). Conditional on the MAF- and LD-related annotations, 
SCARlink exhibited higher meta-analyzed standardized effect size 
(τ* = 0.67, P = 7 × 10−27) compared to ArchR (τ* = 0.58, P = 2 × 10−30); 
however, this disease signal was not significant conditional on the 
baseline and baseline-LD annotations (Extended Data Fig. 5c). Next, 
we performed a joint heritability analysis of SCARlink and ArchR 
annotations. Conditional on the MAF- and LD-related annotations, 
both SCARlink and ArchR annotations showed jointly significant τ*; 
however, SCARlink showed 1.9× higher joint disease information. 
Based on these results, we conclude that SCARlink predictions are 
more disease informative compared to ArchR annotations, based 
both on the enrichment of fine-mapped variants and disease herit-
ability analyses.

For the fine-mapped eQTL traits from matched GTEx tissues, 
we observed 12× to 20× enrichment in PBMC for the first 20,000 
gene-linked tiles (Fig. 3c, left) and 10× enrichment across predicted 
gene-linked tiles at FDR < 0.001 (Fig. 3c, right). We also observed 
15× enrichment in pancreas multi-ome. Both PBMC and pancreas 
multi-ome gene-linked tiles have substantially higher enrichment 
than the enrichment using ArchR gene-linked peaks (Fig. 3c). To assess 
tissue-specific eQTL enrichment, we calculated the enrichment in 
PBMC and pituitary multi-ome of eQTLs from nonmatching tissues 
from the GTEx database. We observed lower enrichment of eQTLs 
from other GTEx tissues (Fig. 3d and Extended Data Fig. 5d), suggest-
ing that SCARlink can identify variants in regulatory regions that are 
tissue-specific and cell-type-specific.

We then assessed the enrichment of SCARlink gene-linked tiles in 
conditionally independent eQTL signals from GTEx. SCARlink showed 
10× to 21× enrichment of primary eQTLs (defined by the eQTL with the 
most significant association for the gene) in the pancreas for the top 
4,000 predicted gene-linked tiles and substantially higher enrich-
ment in PBMC compared to ArchR peaks (Fig. 3e and Extended Data 
Fig. 5e). We additionally performed the enrichment analysis of SCAR-
link gene-linked tiles with different categories of variants from Regu-
lomeDB21,22. SCARlink showed higher enrichment for the top 20,000 

Fig. 2 | SCARlink coefficients enrich for promoter-linked chromatin 
interactions. a, SCARlink output of HLA-DQB1 in PBMC multi-ome (n = 9,460 
cells; Supplementary Table 1). Cell-type-specific standardized approximate 
Shapley scores (zscores) of the tiles are plotted as blue dots under the 
accessibility panel of every cell type. Arc plots of significant PCHi-C interactions14 
(Methods; Supplementary Table 2) for HLA-DQB1of CD4 naive T, CD8 naive T, 
CD14+ monocytes and B cells are shown below the model output. The boxplots 
inside the violin plots for gene expression in a are centered on the median, 

bounded by the quartiles, and the whiskers depict the remaining distribution.  
b, Boxplots comparing feature scores of tiles with or without PCHi-C  
interactions (Supplementary Table 2) for highly expressed genes per cell type. 
Significance estimated using one-sided Mann–Whitney U test. The boxplots 
in b are centered on the median, bounded by the quartiles, with the whiskers 
extending up to values within 1.5× IQR, and the remaining points as outliers.  
IQR, interquartile range.
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gene-linked tiles in PBMC over ArchR peak–gene links for 5,461 Regu-
lomeDB variants with a rank of 1a, corresponding to the most stringent 
cutoff based on motif accessibility at eQTL/caQTLs (Fig. 3f). SCARlink 
tiles also show higher enrichment for the top 4,000 gene-linked tiles 
in pancreas and top 12,000 tiles in pituitary (Extended Data Fig. 5f,g 
and Supplementary Table 7).

Predicted enhancers prioritize disease-associated loci in a 
cell-type-specific manner
We also examined variants causally linked to disease and gene 
expression phenotypes based on GWAS and eQTL studies and used 
SCARlink to link the variant-containing tile to the gene in specific 
cell types. One such variant is rs112401631 (chr17:40608272:T:A),  
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Fig. 3 | SCARlink-predicted gene-linked tiles enrich for causal variants.  
a, Schematic depicting the filtering of gene-linked tiles per cell type from 
SCARlink output of genes from PBMC, pancreas and pituitary multi-ome. These 
filtered gene-linked tiles are then checked for enrichment of causal variants from 
GWAS, eQTLs and other variant databases. b, Bootstrapped mean enrichment of 
17,769 fine-mapped GWAS variants from UK Biobank (Supplementary Table 3)  
in the gene-linked SCARlink tiles (purple; Supplementary Table 4) and ArchR 
peak2gene peaks (yellow) as a function of the number of gene-linked tiles/
peaks for PIP threshold of 0.2 (left). Comparison of enrichment at different PIP 
thresholds (right). The bars depicting a 95%CI of enrichment were obtained by 
bootstrapping traits. A total of 1,000 bootstrap iterations were used. *P < 0.05 
and ***P < 0.001. c, Bootstrapped mean enrichment of 281 fine-mapped eQTLs 

from whole-blood GTEx in PBMC multi-ome (left). Comparison of enrichment 
in the matched GTEx tissue as the multi-ome datasets (right). The number of 
fine-mapped variants per tissue is mentioned in parenthesis. *P < 0.05 and 
***P < 0.001. d, Comparison of bootstrapped mean enrichment of eQTLs from 
GTEx tissues (pituitary, pancreas and whole blood) in PBMC multi-ome.  
e, Bootstrapped mean enrichment of 255 primary independent eQTLs from the 
pancreas as a function of a number of gene-linked tiles/peaks (left). Enrichment 
of primary eQTLs in matched tissues in PBMC, pancreas and pituitary (right). 
*P < 0.05. The bars depicting a 95%CI of enrichment in c–e were obtained by 
bootstrapping genes. Two-sided bootstrapped P values are plotted in b–e. A total 
of 1,000 bootstrap iterations were used. f, Enrichment of 5,558 variants from 
RegulomeDB of rank = 1a in PBMC multi-ome. CI, confidence interval.
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a fine-mapped variant for asthma (PIP = 0.27) that colocalizes with 
an eQTL chr17:40600717:G (PP.H4 = 0.9022; coloc23) linked to CCR7 
gene in the lymphoblastoid cell line23,24. The CCR7 gene is well-known 
for its role in the homing of T cell populations to lymphoid organs25,26, 
and CCR7+ memory CD4+ T cells have previously been associated with 
severity of asthma27,28. In PBMC data, the tile underlying rs112401631 
was predicted to be significantly linked to the CCR7 gene in various 
T cell subtypes (CD8 effector with FDR-adjusted P = 3.7 × 10−08, CD4 
memory with FDR-adjusted P = 5.9 × 10−21, CD8 naive with FDR-adjusted 
P = 7.6 × 10−18and CD4 naive with FDR-adjusted P = 2.2 × 10−17; Fig. 4a). 
Although the eQTL-containing tile is not predicted to be linked to CCR7 
by SCARlink, the tile 783 bases from the eQTL is significantly linked 
in CD8 naive T cells (FDR-adjusted P = 2.69 × 10−07; Supplementary 
Table 8). This tile includes the variant rs1358175 that is in LD with the 
colocalized eQTL (R2 = 1; Supplementary Table 8). Furthermore, the 
10 kb window around the GWAS causal variant contains enhancers 
exclusive to the T cell subsets (Supplementary Table 9). Based on these 
results, we hypothesize that SCARlink-predicted links can be used 
to ascertain putatively causal cell types underlying GWAS and eQTL 
colocalizations.

A second example is the fine-mapped variant rs12454712 
(chr18:63178651:T:C) for concentrations of circulating insulin-like 
growth factor 1 (IGF-1; PIP = 0.99) and type 2 diabetes (adjusted by 
BMI; PIP = 0.99) and lies in an intronic enhancer of BCL2(ref. 29). IGF-1 is 
known to prevent apoptosis through the activity of BCL2, which encodes 
an antiapoptotic transcription factor30. Furthermore, somatotropes, 

endocrine cells in anterior pituitary, secrete growth hormone that 
affects the production of IGF-1 and IGF-1 in turn negatively regulate 
growth hormone production31. Interestingly, we found this variant to 
be in a regulatory region of pituitary stem cells (PSCs; FDR-adjusted 
P = 1.3 × 10−10) and somatotropes (FDR-adjusted P = 6.3 × 10−04; Fig. 4b), 
possibly suggesting a role in pituitary stem cell differentiation. Addi-
tionally, both high and low IGF-1 levels have been associated with insulin 
resistance and a higher risk of type 2 diabetes, respectively32. While we 
found this variant within the regulatory region of cells from the pitui-
tary gland, it is not accessible in the PBMC multi-ome (Extended Data 
Fig. 6), and SCARlink appropriately assigns the tile low significance in 
these cell types. Moreover, GWAS-eQTL colocalization analysis reveals 
that the eQTL chr18:63179197:G (PP.H4 = 0.9456; coloc23) lies in a tile 
substantially linked to BCL2 in PSCs (Supplementary Table 8).

SCARlink-predicted gene expression enables chromatin 
potential analysis
We next asked whether SCARlink-identified regulatory regions become 
accessible before transcription of the modeled genes in developmental 
settings and thus can be used to determine the developmental trajec-
tory through chromatin potential1,9. This method can be viewed as 
computing the arrow direction in a cell embedding of the neighboring 
cells having the most similar observed gene expression to the current 
cell’s predicted expression. The arrows are then plotted on the same cell 
embedding to visualize the differentiation trajectory. Analogous to the 
original definition of chromatin potential-based correlation between 
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DORCs and genes, we computed a smoothed SCARlink-predicted gene 
expression vector for each given ‘source’ cell, identified a set of ‘target’ 
cells whose smoothed observed gene expression vectors are most cor-
related with the predicted source cell expression vector, determined 
the corresponding chromatin potential vector from the source cell 
toward the average position of the target cells and visualized in an FDL 
or UMAP embedding (Methods). We applied SCARlink in this fashion 
to derive chromatin potential vector fields for mouse skin, BMMC, 
pituitary gland and developing human cortex. When computing chro-
matin potential, by default, we chose all genes among the top 2,000 
highly variable genes for which SCARlink-predicted gene expression 
was positively correlated with observed gene expression. This filtered 
out less than 5% of genes for mouse skin (19 of 434 genes), BMMC (36 of 
785 genes) and pituitary gland (2 of 612 genes), and 6% of genes from 
the developing human cortex (73 of 1,201 genes).

We found that the SCARlink chromatin potential vector fields 
recapitulate known differentiation trajectories in mouse skin, BMMC 

and pituitary gland (Fig. 5a–c). However, in developing human cortex 
cells, chromatin potential failed to identify that the radial glia cell 
population is the root cell type9 (Fig. 5d). Upon comparing the differ-
ence between predicted and observed gene expression averaged over 
all genes, we found that this difference is the highest in the middle 
of the known developmental trajectory (nIPC/GluN1) and decreases 
afterward (Fig. 5d–g). Examining further, we identified two clusters 
of genes based on hierarchical clustering of single-cell expression 
patterns (Extended Data Fig. 7a and Supplementary Table 10), with 
one cluster enriched for gene ontology terms related to glial cell dif-
ferentiation (Extended Data Fig. 7b,c). Performing SCARlink chromatin 
potential analysis on this subset of 470 genes recovered the correct 
developmental trajectory (Fig. 5h). For this subset of genes, we also 
found that the difference between average predicted and observed 
gene expression increases over the course of the trajectory, consist-
ent with the opening of chromatin at these loci preceding target gene 
expression (Fig. 5i–k). While our analysis demonstrates the utility of 
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Fig. 5 | SCARlink provides a robust implementation of chromatin potential. 
a–c, SCARlink-computed chromatin potential applied to BMMC8 (7,155 cells and 
785 genes; a), mouse skin1 (6,431 cells and 434 genes; b) and pituitary gland12 
(11,549 cells and 1,221 genes; c) recapitulates known differentiation trajectory in 
each system. The arrows point toward the direction in which the observed gene 
expression is most similar to SCARlink-predicted gene expression. d, Chromatin 
potential does not capture the known differentiation trajectory of developing 
human cortex9 (4,642 cells and 1,221 genes) when using all genes based on the 

correlation of predicted and observed gene expression. e–g, For the genes used 
in d, plots show the mean SCARlink-predicted expression (e), the mean observed 
expression from scRNA-seq (f) and the difference between the mean predicted 
and observed expression (g). h, The known trajectory of the developing human 
cortex is better represented when only using a subset of the genes (470 genes). 
i–k. For the genes used in h, plots show the mean predicted expression (i), the 
mean observed expression (j) and the difference between the mean predicted 
and observed expression (k).

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | April 2024 | 627–636 635

Article https://doi.org/10.1038/s41588-024-01689-8

chromatin potential as a strategy to identify a differentiation trajectory 
in multi-ome datasets, we also caution that prior selection of a subset 
of genes may be required to obtain results consistent with known biol-
ogy. Furthermore, as reported previously1, we found that chromatin 
potential often identified developmentally correct trajectories in set-
tings where RNA velocity performed inconsistently or failed (Extended 
Data Fig. 8).

Discussion
We have shown that SCARlink provides an effective and robust method 
for identifying cell-type-specific enhancers of genes without prior com-
putation of a peak set. SCARlink also efficiently resolves the cell-type 
specificity of tissue-relevant eQTLs and GWAS traits using Shapley 
value analysis and computes chromatin potential vector fields tracking 
development or differentiation.

We note that SCARlink is designed to be a simple gene-level model, 
namely a (regularized) generalized linear model with a log link function 
and constrained to have non-negative regression coefficients. This 
simplicity enables fast training and model selection for predicting gene 
expression as well as very efficient computation of approximate Shap-
ley values to identify significant tiles in a cell-type-specific manner.

The imputed gene expression estimated by SCARlink also ena-
bles the computation of chromatin potential from multi-omic data. 
Additionally, by modeling additive positive effects, we obtain a highly 
interpretable model where significant tiles from Shapley analysis are 
validated by chromosome conformation capture data and enriched for 
fine-mapped eQTLs and GWAS variants. We also expect that SCARlink’s 
cell-type-specific enhancers and enhancer–gene links could be incor-
porated into functionally driven transcriptome-wide association study 
(TWAS) methods for predicting gene expression from genotypes33–36.

Despite the effectiveness of SCARlink’s generalized linear mod-
eling, we can anticipate settings where more complex gene-level 
models might be suitable; for example, one could include interaction 
terms between tiles in the regression model or even employ nonlinear 
neural network architectures for the same single-cell gene expres-
sion prediction task. Our implementation of SCARlink in TensorFlow 
should facilitate the implementation of and comparison to these more 
complex models.

Finally, there has been extensive work on DNA sequence models 
for bulk epigenomic and scATAC–seq data37,38, including in the context 
of the prediction of bulk gene expression39,40. In future studies, we plan 
to integrate DNA sequence information into SCARlink, sharing the 
sequence model associated with each cell across gene models, with 
the goal of modeling the regulatory grammar in enhancers as well as 
their regulatory impact on target gene expression.

Online content
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maries, source data, extended data, supplementary information, 
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butions and competing interests; and statements of data and code avail-
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Methods
Ethics statement
This study did not generate any biological samples and used publicly 
available datasets.

Data preprocessing
Single-cell multi-omic data were processed using Seurat (v4.3)41; 
scRNA-seq) and ArchR (v1.0.2)6; scATAC–seq). We performed quality 
control separately for scRNA-seq and scATAC–seq. We filtered out 
cells with mitochondrial reads >20% for scRNA-seq with unannotated 
cell types (10× PBMC and pancreas). For scATAC–seq, we filtered for 
cells with at least 1,000 fragments and performed doublet detection 
on unannotated datasets. For doublet detection, we first estimated 
doublet scores using the function addDoubletScores() from ArchR 
and then filtered doublets with filterDoublets() from ArchR. ArchR also 
splits the genome into tiles of a specific size (500 bp by default) and 
computes the Tn5 insertion counts for each tile. The insertion counts 
are set to zero for blacklisted regions by ArchR. We performed counts 
per 10,000 normalizations of the scRNA-seq data. Then we ordered 
the cells in the same manner for both scRNA-seq and scATAC–seq. We 
selected the top 5,000 highly variable genes, using Seurat, and used 
this gene set as input to SCARlink.

Cell-type annotation
Cell-type annotation was provided by the original studies for BMMC, 
developing human cortex and mouse skin. We clustered and annotated 
the clusters of the pituitary gland dataset based on previously reported 
marker genes42 (Supplementary Tables 11 and 12). We clustered the 
pancreas data and separately annotated the cells with the help of a 
pancreas reference atlas43 using the following label transfer functions of 
Seurat41,44: FindTransferAnchors() and TransferData() (Supplementary 
Table 13). Then we renamed the cluster with the cell-type annotation 
having the maximum overlap with the cluster. If multiple cell-type 
annotations overlapped with a single cluster, we denoted that cluster 
as having ‘mixed’ cell type. In the case of the PBMC dataset, we used 
the PBMC marker genes from Azimuth41 (Supplementary Table 14) for 
annotating the clusters.

Gene regression model
SCARlink uses regularized Poisson regression to predict single-cell 
gene expression from single-cell chromatin accessibility. This method 
can be applied to both single-cell and single-nucleus multi-ome data.

We used ArchR to split the genome into 500 bp tiles and computed 
tile-level scATAC–seq feature accessibility. We selected tiles that span 
250 kb upstream/downstream of and across the gene body. The acces-
sibility within the tiles was normalized by the ReadsInTSS parameter, 
which is also the default normalization in ArchR, to control for sequenc-
ing depth and sample quality6. Gene expression values were normalized 
by counts per million. For each gene, the chromatin accessibility input 
to SCARlink was ReadsInTSS-normalized, then min–max scaled on a 
per-tile basis. The min–max scaling is performed on the training cells 
and then the same learned rule is applied to scale the tile counts of the 
test set. We ran the model separately on the 5,000 most variable genes 
determined using Seurat. Additionally, we filtered out genes for which 
the expression was too sparse with a threshold of 0.9, or 90% zeros.

We used regularized Poisson regression to predict gene expression 
from the tile matrix. L1 regularization results in poorer prediction of 
gene expression (Extended Data Fig. 9a) and the learned regression 
coefficients can have varying degrees of sparsity that lack interpretabil-
ity (Extended Data Fig. 9b–d). Additionally, since training an elastic net 
would require training more models with different pairs of regulariza-
tion parameters for L1 and L2 losses, and given the suboptimal results 
of L1 regularization, we did not consider using an elastic net approach. 
Thus, L2 regularization is used because it is preferable for prediction 
problems, and we are not filtering any features during model training.

For every gene, we optimized the following loss function:

1
n

n
∑
i=1

((Xiw + ϵ) − yi log (Xiw + ϵ)) + α‖w‖22

Here n corresponds to the number of cells, X corresponds to 
the min–max scaled accessibility matrix, y corresponds to the gene 
expression vector, w is the learned regression coefficient vector and 
α is the regularization parameter. We left out one-fifth of the data for 
testing. The regularization parameter was selected using fivefold 
cross-validation on the remaining four-fifths of the cells. The Spear-
man correlation was computed on the held-out test cells. We used 
TensorFlow in Python to develop the model and the Adam optimizer for 
training. We constrained the regression coefficients to be non-negative, 
thereby learning only positive regulators for genes.

Significance test for model predictions on individual genes
To compare the overall performance of SCARlink predictions on test 
cells with other methods based on the Spearman correlation with 
ground truth, we used a Wilcoxon signed-rank test over genes.

We also estimated whether the Spearman correlations of SCARlink 
predictions are substantially different from the correlations using 
other methods for individual genes. The correlations from the two 
methods are not independent because they are calculated on the same 
observed gene expression values. We calculated the following test 
statistic for each gene and performed a ttest to estimate significance 
(one-sided)45:

t = (ρ12 − ρ13)
√√√√
√

(n − 1)(1 + ρ23)

2 ( n−1
n−3

) |S| + (ρ12+ρ13)
2

4
(1 − ρ23)

3
∼ T(n − 3)

where, |S| = 1 − (ρ2
12 + ρ2

13 + ρ2
23) + 2ρ12ρ13ρ23, ρ12 is the Spearman correla-

tion between SCARlink prediction and observed gene expression, ρ13 
is the Spearman correlation between ArchR gene score/DORC score 
prediction and observed gene expression, ρ23 is the Spearman correla-
tion between SCARlink prediction and ArchR gene score/DORC score 
prediction and n is the number of cells in held-out test set.

We performed FDR correction of the P values using the Benjamini–
Hochberg method46. The scatter plots in Fig. 1b–e and Extended Data 
Fig. 3a–c are colored using these FDR-corrected P values.

Shapley scores and tile significance
After training the model, we used the SHAP Python package (v0.41.0)47 
to compute Shapley values for a linear model, which closely approxi-
mate the Shapley values of our Poisson regression model.

shapt = Wt (X∗,t −mean (X∗,t))

Here shapt corresponds to the Shapley value of a particular tile t.
We computed these approximate Shapley values in a 

cell-type-specific manner. For each cell type, we iteratively sampled 
50 training cells from the cell type to form a pseudobulk sample and 
computed Shapley values for each tile of the pseudobulk profile. We 
iterated 500 times and then averaged the Shapley values for each tile 
over iterations. This gave an average Shapley score for each tile and cell 
type. Finally, we standardized the scores usingz-score transformation. 
We scaled features this way separately for each gene model to identify 
gene-linked tiles. Note that we estimate Shapley values only for cell 
types having at least 100 cells.

PCHi-C analysis
We used publicly available PCHi-C data for hematopoietic cells14. 
We transformed the coordinates from hg19 to hg38 with LiftOver48. 
PCHi-C loops at each promoter bait were identified by fitting a negative 
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binomial generalized additive model49 to the observed counts as a 
function of GC content, mappability and length of the restriction frag-
ments alongside a smooth distance function parameterized using a 
reduced-rank thin plate spline basis using the GAMLSS R package. If 
replicates were present, a replicate covariate was added to the model 
to control for library size. After this base model was fit, interactions 
were flagged by using the fitted distributions to compute a P value. 
This overall strategy is akin to the GLM-based strategy of HiC-DC+ to 
identify significant interactions50. After P values were computed for 
each restriction fragment in the vicinity of a promoter bait, P values 
across replicates were pooled using Fisher’s method and corrected 
using Benjamini–Hochberg for each promoter bait. To further improve 
our ability to detect interactions, we employed locally adaptive weight-
ing and screening to smooth the P values and simultaneously control 
for the false discovery rate51.

For the Shapley value comparison, we used the AverageExpression 
function from Seurat41 to calculate average scaled gene expression and 
selected highly expressed genes per cell type. For every cell type, we 
restricted to genes with an average scaled gene expression of more 
than 0. Then, we chose the top 50 genes if there were more than 50 
highly expressed genes per cell type. Next, we extracted all tiles that 
contain significant PCHi-C interactions for CD4 naive T, CD8 naive T, 
CD8 memory T and B cells for these genes. If there were multiple tiles 
spanning one PCHi-C interaction, we selected the maximum Shapley 
value across the tiles. The background Shapley values are from tiles 
that do not contain any significant PCHi-C interactions for the same 
genes. Next, we extracted tiles with accessibility similar to the acces-
sibility within peaks. We used an accessibility threshold greater than 
10% of least accessible peaks. This ensured that both PCHi-C interac-
tion containing tiles and background tiles are accessible. We further 
subsampled tiles from both sets to ensure similar accessibility distri-
bution. We performed the Mann–Whitney U test per cell type to assess 
the significance of the difference in Shapley scores between tiles with/
without PCHi-C interactions.

ArchR peak2gene
We used ArchR6 to first perform peak calling using MACS2 (v2.2)52 
grouped by the cell-type annotations. We then used the ArchR pipe-
line to link peaks to genes, which performs a pairwise correlation of 
accessibility and gene expression on aggregated meta-cells. We used 
the same genomic window as SCARlink to predict the peak–gene links.

Tile significance for variant analysis
We found that the scaled Shapley scores were not comparable across 
gene models. Therefore, we used an additional metric to order the 
gene-linked tiles when computing enrichment–recall curves; specifi-
cally, we estimated the significance of difference in the prediction of 
gene expression with and without a specific tile on held-out test cells 
using a paired Wilcoxon (signed-rank) test. We performed this sig-
nificance test in a cell-type-specific manner across all genes in each 
multi-ome dataset. The resulting P values were then FDR-corrected 
using the Benjamini–Hochberg method46.

GWAS enrichment analysis
We used fine-mapped GWAS variants from UK Biobank (Data avail-
ability) and first filtered out variants that lie within exons or are splic-
ing eQTLs. The exons were extracted from hg38 RefSeq annotations 
from UCSC genome browser53. UK Biobank originally had 94 traits. We 
retained the top 90% of the traits based on the number of fine-mapped 
variants lying within 250 kb of all the genes SCARlink was trained on. 
This resulted in 82 traits. We considered a variant to be a causal variant 
if it is associated with at least one trait with PIP > 0.2. This resulted in 
17,769 fine-mapped causal variants that are present in tiles spanning 
250 kb upstream/downstream of all the genes from PBMC, pancreas and 
pituitary. Next, for each trait, we ensured that the common variants and 

causal variants were matched based on the following criteria (Extended 
Data Fig. 10): (1) the same minor allele frequency (MAF) category. We 
defined MAF groups as <0.01, 0.01–0.1 and >0.1; (2) the same LD blocks 
as defined in https://github.com/jmacdon/LDblocks_GRCh38/blob/
master/data/pyrho_EUR_LD_blocks.bed; (3) the same distance-based 
genome annotations. Because we ran SCARlink with 500 bp tiles that 
span 250 kb upstream and downstream of the gene body, the first 500 
and last 500 tiles correspond to the flanking upstream/downstream 
regions. To make the distance annotation computationally less expen-
sive, we labeled the middle tiles, spanning from the 500th tile to the 
n-500th tile, as ‘gene body’, the 20 tiles upstream (left or right of the 
gene body depending on the strand) of the gene as ‘promoter-proximal’ 
corresponding to 10,000 bases and the 20 tiles downstream of the gene 
as ‘downstream’ corresponding to the downstream 10,000 bases. The 
remaining tiles are annotated as ‘distal’ regions. Here nstands for the 
total number of tiles for a given gene model. Note that for all genes, 
the number of tiles annotated as ‘promoter/upstream’, ‘downstream’ 
and ‘distal’ will be the same.

For each trait i, and matched group g of MAF, LD block and genome 
annotation, we calculated precision as the ratio of the number of causal 
variants in predicted gene-linked tiles/peaks to the number of common 
variants in predicted gene-linked tiles/peaks. Then, we calculated 
enrichment as described previously2, by dividing precision by the 
probability of encountering a causal variant of the given trait across 
all the tiles. We finally computed the average enrichment across all 
the traits as follows:

Precisiontrait i,g

= numberof causal variants of traiti in group gof gene linked tiles/peaks
numberof commonvariants in group gof gene linked tiles/peaks

Probability (causal variant of traiti,g) =

numberof causal variants of traiti in group

g across all tiles of SCARlink genes
numberof commonvariants across all

tiles fromgroupgof SCARlink genes

Enrichmenttrait i,g =
Precisiontrait i,g

probability (causal variant of traiti,g)

Enrichmenttraiti = average (Enrichmenttrait i,g)

Enrichment = average (Enrichmenttrait i)

In the case of SCARlink gene-linked tiles, we restricted to genes 
having SCARlink-predicted gene expression correlation of >0.1 and 
to gene-linked tiles with FDR < 0.001. For ArchR gene-linked peaks, 
we restricted to peaks having a correlation of >0.1 and FDR < 0.001.

S-LDSC
Using a correlation cutoff value of 0.1 and FDR < 0.001, we obtained 
1,730 genes in common to both SCARlink and ArchR peak2gene pre-
dictions from PBMC, pituitary and pancreas. To ensure comparable 
polygenicity, we used gene-linked tiles/peaks from the same 1,730 
genes for S-LDSC. S-LDSC determines the contribution of a genomic 
annotation to disease and complex trait heritability17,19. For our analy-
sis, the genomic annotations correspond to the SCARlink or ArchR 
predictions of gene-linked tiles/peaks along with baseline annotations 
related to LD, MAF, coding and epigenomic regions (Supplementary 
Table 5). We performed a marginal or joint analysis of the predicted 
gene-linked tiles/peaks conditional on the following three different 
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baseline annotations: LD + MAF18 (17 annotations), baseline (53 annota-
tions) and baseline-LD (97 annotations).

Briefly, S-LDSC considers the per-single-nucleotide polymorphism 
(SNP) heritability or variance of effect size (of standardized genotype 
on trait) of each SNP to be equal to the linear contribution of each 
annotation, var(βj) = ∑jacjτ(c), where acj is the value of annotation c for 
SNP j, and τ(c) is the contribution of annotation c to per-SNP heritability 
conditioned on other annotations. S-LDSC estimates τ(c) for each 
annotation using the following equation:

E( χ2j ) = n∑
c
l ( j, c) τ (c) + 1

where l ( j, c) = ∑kackr2jk is the stratified LD score of SNP j with respect to 
annotation c and rjk is the genotypic correlation between SNPs j and k 
computed using data from 1000 Genomes Project; n is the GWAS sam-
ple size. We assess the informativeness of a given annotation c using 
two metrics. The first metric is enrichment (E), defined as follows (for 
binary and probabilistic annotations only):

E = h2
g(c)/h2

g ×M/∑
j
acj

where h2
g(c) is the heritability explained by the SNPs in annotation c, 

weighted by the annotation values. The second metric is standardized 
effect size (τ*) defined as follows:

τ∗(c) = τ(c)sdc/ (h2
g/M )

where, sdc is the standard error of annotation c, h2
g  is the total SNP  

heritability and M is the total number of SNPs on which this heritability 
is computed (equal to 5,961,159 in our analyses). τ* (c) represents the 
proportionate change in per-SNP heritability associated with a 1 s.d. 
increase in the value of the annotation.

eQTL enrichment analysis
We used fine-mapped eQTLs from GTEx for whole blood, pancreas 
and pituitary for computing enrichment in gene-linked tiles/peaks. 
We defined causal variants as having PIP > 0.5. We filtered common 
variants for each gene based on matched MAF, LD and genomic anno-
tations as described above. Then, separately for each gene, tissue and 
matched group g, we computed precision, enrichment and recall. We 
further computed the average enrichment and recall over genes per 
multi-ome dataset.

Precisiongene i,g

=

numberof causal variants of genei in

groupgof gene linked tiles/peaks
numberof commonvariants in tiles fromgroupg around

genei in gene linked tiles/peaks

Probability (causal variant of genei,g)

=
numberof causal variants of genei in groupg in tiles aroundgenei
numberof commonvariants in tiles fromgroupg aroundgenei

Enrichmentgenei,g =
Precisiongenei,g

probability (causal variant of genei,g)

Enrichmentgenei = average (Enrichmentgenei,g)

Enrichmentgene = average (Enrichmentgenei)

Additionally, we performed a similar eQTL enrichment analysis on 
GTEx-independent eQTLs for whole blood, pancreas and pituitary. The 
primary independent eQTL is the most substantially associated vari-
ant54 and has a rank of 1. An eQTL with any other rank is an independent 
eQTL less important than the eQTLs with better ranks. There are at most 
13 independent eQTLs per gene, and the whole blood sample has more 
nonprimary independent eQTLs than other tissues. We fixed a correla-
tion cutoff value of 0.1 for both SCARlink genes and ArchR peak2gene 
links and FDR < 0.001.

RegulomeDB enrichment analysis
The variants in RegulomeDB21,22 are assigned ranks based on their asso-
ciated regulatory features. Each variant is also assigned a probability 
score based on a random forest model, where probability scores are cor-
related with the ranks. We chose the most stringent set of variants with 
a rank of 1a, corresponding to variants associated with eQTL/caQTL and 
TF binding with matched motif, footprint and accessible chromatin. 
We further restricted to variants with a probability score of >0.9. We 
considered these variants to be the putative regulatory variants.

We computed enrichment for each matched annotation and group 
g as follows:

Precisiong

= numberof regulatory variants in gene linked tiles/peaks for groupg
numberof commonvariants in gene linked tiles/peaks for groupg

Probability (regulatory variant in groupg)

= numberof regulatory variants in groupg
numberof commonvariants in groupg

Enrichmentg =
Precisiong

probability(regulatory variant in groupg)

Enrichment = average(Enrichmentg)

Downsampling analysis
We performed downsampling on the PBMC multi-ome. We downsam-
pled accessibility counts in the tile matrices and the gene expression 
vectors on a per-cell basis using downsampleMatrix() from the R pack-
age, scuttle (v1.8.4)55. The downsampling was performed to generate 
sparse matrices with 33% and 66% of the original counts. For each of the 
33% and 66% downsampled datasets, we ran SCARlink in the following 
manner: (1) downsampled scATAC–seq and original scRNA-seq, (2) 
original scATAC–seq and downsampled scRNA-seq and (3) downsam-
pled scATAC–seq and downsampled scRNA-seq.

The resulting gene expression predictions were compared to 
the original input gene expression using the Spearman correlation. 
For each of the six SCARlink outputs, we predicted gene-linked tiles 
using the same cutoff values as the original PBMC output as follows: 
Spearman correlation > 0.1, standardized Shapley zscore > 0.5 and 
FDR < 0.001.

Additionally, we performed downsampling of a number of cells 
and compared the predicted gene expression to the predictions by the 
original model. The number of cells was downsampled to 25%, 50% or 
75% of the total number of cells in each dataset.

Chromatin potential using SCARlink
We ran chromatin potential on smoothed SCARlink-predicted and 
observed gene expression values. Smoothing was performed over a 
k-nearest neighbor (kNN) graph (k = 50) built using a lower dimensional 
representation of the scATAC–seq data based on latent semantic index-
ing from ArchR. We retained the genes for which the predicted and 
observed gene expression are positively correlated. We then scaled 
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the smoothed predicted and observed gene expression using min–
max scaling. Following this, as in the published chromatin potential 
approach1, for each cell i in the predicted space, we identified the 
nearest neighbors (k = 10) in the observed space.

Yobs i = kNN (Ypred i)

Here Yobs i is the scaled and smoothed observed expression matrix 
of the ten cells with the highest correlation with the scaled and 
smoothed predicted expression vector of cell i, Ypred i. We then plotted 
chromatin potential arrows on the UMAP or force-directed layout 
(ForceAtlas2 v0.3.5) from each cell i, to the average position of the cells 
corresponding to Yobs i. These arrows are further smoothed over a grid 
layout on the FDL/UMAP embedding.

We used FDL visualizations for all datasets except mouse skin, 
where we used the previously published UMAP1. Additionally, for the 
mouse skin data, we ran the analysis on a subset of cell types to compare 
with the reported results1.

By default, we use the genes that are among the top 2,000 highly 
variable genes clearing the sparsity threshold. We do not filter out any 
genes except the ones with a negative correlation between predicted 
and observed expression. We found that by using the top 2,000 highly 
variable genes, we could not always obtain the known differentiation 
trajectory, as in the case of the developing human cortex. In this data-
set, we performed hierarchical clustering of genes based on the cosine 
distance of observed gene expression vectors across all cell types, 
identified two clusters and repeated chromatin potential analysis with 
genes in one of the clusters.

Comparison of chromatin potential and RNA velocity
We estimated RNA velocity using scVelo56. We downloaded preproc-
essed57 scVelo (v0.2.5) objects with spliced and unspliced genes for 
mouse skin and developing cortex and generated the spliced and 
unspliced counts for BMMC using velocyto58. We followed the standard 
scVelo workflow and estimated RNA velocity in ‘stochastic’ mode and 
‘dynamical’ mode and visualized the output on the same UMAP or FDL 
used in Fig. 5a,b,d (Extended Data Fig. 8). Cosine similarity was used to 
compare the direction of arrows obtained from chromatin potential 
and RNA velocity. The difference in length of arrows obtained from 
chromatin potential and RNA velocity was computed and grouped by 
cell type to compare the magnitude of RNA velocity and chromatin 
potential for all stages of the differentiation trajectory.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. We 
ran our analysis on a subset of cells from samples showing the least 
batch effect as described in the Data availability. For each dataset, we 
selected the top 5,000 highly variable genes and then applied sparsity 
thresholding on gene expression before running SCARlink (Methods). 
In case of the S-LDSC analysis, we selected genes that had predicted 
gene-linked tiles/peaks for both SCARlink and ArchR peak2gene pre-
dictions. The experiments were not randomized, as all the datasets are 
publicly available from observational studies. The investigators were 
not blinded to allocation during experiments and outcome assessment, 
as the data were not from controlled randomized studies.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We downloaded the PBMC multi-ome from 10X Genomics. BMMC 
data were part of the NeurIPS 2021 open problem, and the dataset was 
downloaded from GEO (GSE194122). We used BMMC samples labeled as 
site1_donor1, site1_donor2, site1_donor3, site2_donor1, site2_donor4, 

site2_donor5, site3_donor10, site3_donor6, site3_donor7 and site4_
donor9 and the cell types HSC, MK/E progenitor, proerythroblast, 
erythroblast and normoblast. These samples showed the least batch 
effect. Mouse skin SHARE-seq data and DORC annotations were down-
loaded from GEO (GSE140203). The UMAP used for mouse skin was 
shared by the authors1. Pituitary multi-ome data were downloaded 
from GEO (GSE178454). The developing human cortex scRNA-seq was 
downloaded from GEO (GSE162170) and the corresponding multi-omic 
scATAC–seq was downloaded using the link https://github.com/Green-
leafLab/brainchromatin/blob/main/links.txt. We used samples labeled 
hft_ctx_w21_dc2r2_r1 and hft_ctx_w21_dc2r2_r2 with the least batch 
effect. We subset the data to retain cells labeled as cycling progenitor, 
mGPC/OPC, SP, RG, nIPC/GluN1, GluN2, GluN3, GluN4 and GluN57. We 
downloaded the pancreas multi-ome dataset from the ENCODE portal 
(multi-omic series ENCSR233SQS) using the link https://www.encode-
project.org/multiomics-series/ENCSR233SQG/.

PCHi-C data14 were downloaded from https://osf.io/u8tzp/. We 
used common and low-frequency variants (MAF ≥ 5) from the 1000 
Genomes Project, phase 3 (ref. 59). The fine-mapped eQTLs for whole 
blood, pancreas and pituitary were downloaded from GTEx v8 (ref. 15). 
The fine-mapping was performed using CAVIAR60. The splicing QTLs 
(sQTLs) generated using LeafCutter61 were downloaded from GTEx v8. A 
Q-value cutoff of 0.05 was used to select the sQTLs. We also downloaded 
the conditionally independent eQTL from GTEx v8. UK Biobank GWAS 
data with fine-mapping using SuSIE62 and FINEMAP63 were downloaded 
from the Finucane Lab (https://www.finucanelab.org/data). Colocali-
zation of GWAS and eQTL variants performed using the method coloc 
were downloaded from OpenTargets24 (https://ftp.ebi.ac.uk/pub/
databases/opentargets/genetics/latest/v2d_coloc). LD blocks was 
downloaded from https://github.com/jmacdon/LDblocks_GRCh38/
blob/master/data/pyrho_EUR_LD_blocks.bed.

All SCARlink models and additional processed files required 
to generate the figures are available at https://figshare.com/
s/9b9e89ff3150aebb6d7a (ref. 64).

Code availability
SCARlink is available on GitHub at https://github.com/snehamitra/
SCARlink/ (ref. 65). The notebooks to generate the figures are available 
within the same GitHub repository at https://github.com/snehamitra/
SCARlink/tree/main/paper_figures (ref. 65).
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Extended Data Fig. 1 | Comparison of sparsity of scATAC-seq and scRNA-seq. a. Distribution of fragments near TSS (ReadsInTSS) from scATAC-seq for all six data 
sets. b. Distribution of UMI counts from scRNA-seq for all six data sets. The boxplots inside the violin plots are centered on the median, bounded by the quartiles, with 
the whiskers depicting the remaining distribution.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Count down-sampling of PBMC multi-ome.  
Comparison Spearman correlations of SCARlink predictions on PBMC  
multi-ome with and without count downsampling of scATAC-seq (top row), 

scRNA-seq (second row), or both (bottom row). Linear least-squares regression 
was performed to determine slope and intercept. A two-sided Mann-Whitney U 
test was used to assess significance.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | SCARlink prediction of gene expression compared to 
existing methods. a–c. Comparison of Spearman correlation of prediction of 
gene expression between SCARlink and ArchR gene score in (a) mouse skin1, (b) 
pancreas10,11, and (c) pituitary multi-ome12. For each of the scatterplots in a–c, a 
significance score is computed between the Spearman correlations of SCARlink 
and ArchR gene score. The dots are colored based on the p-values (one-sided).  
d. Comparison of Spearman correlation of prediction of gene expression 
between SCARlink and ChrAccR in developing human cortex multi-ome. Each dot 

is a single gene. We use the Spearman correlations pre-computed using ChrAccR 
scores for each gene as previously reported9. Hence, no statistical tests were 
performed. Here the dots are colored based on the density of genes. e. Smoothed 
distribution plot depicting the number regulatory regions predicted within 
SCARlink tiles (blue) and ArchR paired peak-gene links (orange) is highest within 
the gene body(dist in basepairs=0) and decreases on moving further away from 
the gene body.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | SCARlink predictions are robust to down-sampling 
number of cells. SCARlink was run with 25% (first column), 50% (second column), 
and 75% (third column) of the original number of cells. Spearman correlations 
for these down-sampled models on y-axis are compared to the correlations of 

predictions obtained using the original model (x-axis). Linear least-squares 
regression was performed to determine slope and intercept. A two-sided Mann-
Whitney U test was used to assess significance.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Comparison of variant enrichment in gene-linked tiles/
peaks from SCARlink and ArchR peak2gene. a. Number of predicted gene-
linked tiles in PBMC multi-ome upon down-sampling scATAC-seq, scRNA-seq, 
or both. Downsampling is performed either to 33% or 66% of original counts. 
b. Trait-specific enrichment of fine-mapped GWAS variants from UK Biobank 
for PIP > 0.2. Enrichment for a trait is 0 when no variants are found in predicted 
gene-linked tiles/peaks. Enrichment is plotted for different distance grouping. 
The percentage in the title of the plots indicate the number of traits for which 
SCARlink enrichment is greater than or equal to ArchR enrichment. c. S-LDSC 
meta-analyzed enrichment and τ* calculated using marginal heritability (top), 
and joint heritability (bottom) model for 82 traits for genes common to both 
SCARlink (mean annotation: 7e-3) and ArchR (mean annotation: 8e-3). Error bars 

indicate standard errors. All bars are significant unless otherwise specified. Two-
sided p-values are estimated using meta-analysis (Supplementary Table 6). The 
P values are defined as **: p < 0.1; ***: p < 0.001; ****: p < 0.0001. d. Bootstrapped 
mean enrichment of pituitary multi-ome for GTEx pituitary, and other GTEx 
tissues (pancreas and whole blood) obtained by bootstrapping genes (n = 1,000). 
Error bars are 95% confidence interval. e. Bootstrapped mean enrichment 
plots for all independent eQTLs in PBMC, pancreas, and pituitary for closely 
linked tissues obtained using bootstrapping (n = 1,000). Error bars indicate 95% 
confidence interval. Two-sided bootstrapped P values are plotted (b–e).  
f,g. Enrichment plots for RegulomeDB variants with ranking=1a in (f) pancreas 
and (g) pituitary multi-ome.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | SCARlink output of BCL2 in 10x PBMC. The gray dot 
at the bottom denotes the variant associated with IGF1 and T2D_BMI. The 
variant-containing tile is not important across any of the cell types in PBMC 
(n = 9,460 cells, Supplementary Table 1). The boxplots inside the violin plots for 

gene expression are centered on the median, bounded by the quartiles, with the 
whiskers depicting the remaining distribution. Z scores correspond to the cell-
type-specific standardized Shapley values.

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | Enriched GO terms for the two clusters of genes in 
developing human cortex. a. Heatmap showing comparison of scaled gene 
expression from scRNA-seq in the two identified clusters across the cell types of 

developing human cortex (4,642 cells). b,c. Significant GO terms enriched in (b) 
cluster 0 (731 genes) and (c) cluster 1 (470 genes), colored by fold enrichment. 
Genes in cluster 1 capture the known differentiation trajectory.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Comparison of chromatin potential to RNA velocity. 
RNA velocity was estimated using scVelo56 on mouse skin1 (a,b) (n = 33,314 cells, 
Supplementary Table 1), developing cortex9 (c,d) (n = 4,642 cells, Supplementary 
Table 1), and BMMC8 (e,f) (n = 7,155 cells, Supplementary Table 1). scVelo was run 
in two modes: ‘stochastic’ mode with the previously reported gene set (a,c,e) or 
with chromatin potential genes (f), and ‘dynamical’ mode with the previously 
reported gene set (b,d). The direction of velocity (first column) changes between 
the two modes (a–d) and the direction is opposite to known trajectory in BMMC 

(e,f). The scVelo arrows (first column) depict the direction of RNA velocity 
based on spliced and unspliced mRNA counts. Cosine similarity between scVelo 
arrows and chromatin potential arrows are plotted on UMAP (second column) 
or grouped by cell type (third column). The difference in the length of chromatin 
potential and RNA velocity arrows are grouped by cell type (fourth column). The 
boxplots are centered on the median, bounded by the quartiles, with the whiskers 
extending up to values within 1.5× inter-quartile range (IQR), and the remaining 
points as outliers.

http://www.nature.com/naturegenetics
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Extended Data Fig. 9 | L2-regularization makes better predictions than 
L1-regularization. a. Comparison of Spearman correlations of predicted and 
observed gene expression for models trained using Poisson regression with 
L2 (x-axis) and L1 (y-axis) regularization on PBMC multi-ome (n = 9,460 cells, 
1,241 genes, Supplementary Table 1). Each dot corresponds to a single gene. 
b–d. Comparison of learned regression coefficients when using L2 (left) and L1 
(right) regularization for (b) ZEB2, (c) CCR7, and (d) HLA-DQB1. L1 regularization 

incorrectly assigns high regression coefficient to tile accessible across all cell 
types (highlighted box in b). L1 regularization fails to shrink most regression 
coefficients in (c,d). The boxplots inside the violin plots for gene expression in 
b–d are centered on the median, bounded by the quartiles, and with whiskers 
depicting the remaining distribution. Linear least-squares regression was 
performed to determine slope and intercept. Z scores correspond to the cell-
type-specific standardized Shapley values.

http://www.nature.com/naturegenetics
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Extended Data Fig. 10 | Genomic annotation for the tiles of each gene model. Distance-based annotation of the tiles to select common variants for enrichment 
calculation. Here the example gene is depicted to transcribe from right to left. For genes on the opposite strand, the promoter and downstream annotated regions  
are flipped.

http://www.nature.com/naturegenetics
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