Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial function and gastrointestinal diseases

Abstract

Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.

Key points

  • Mitochondrial health is vital for epithelial barrier function, comprising paracellular junctions, secreted extracellular barrier (mucus and antimicrobial peptides) and the commensal microbiota that is instrumental in inducing immune tolerance.

  • As signalling organelles, the mitochondria produce factors (mitochondrial reactive oxygen species and released mitochondrial DNA) that perpetuate tissue damage and pathological responses.

  • Mutations in genes involved in mitochondrial function and quality control are associated with inflammatory bowel diseases; inflammatory insults drive mitochondrial dysfunction in inflammatory bowel diseases.

  • Mitochondrial dysfunction in intestinal epithelial cells inhibits oxidative phosphorylation, raising oxygen levels, disrupting mucosal oxygen gradient and causing loss of anaerobes that fuel host epithelium.

  • Mitochondrial dysfunction is associated with alterations to cell types proposed to initiate colorectal cancer tumorigenesis in the presence of chronic insult; in established colorectal cancer, mitochondrial metabolism fuels cancer growth.

  • Mitochondrial-targeted therapeutics could provide a dual approach with current treatments in particular subtypes of patients based on genetic mutations, metabolism or biomarkers of mitochondrial stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Canonical metabolic pathways in a cell.
Fig. 2: Mitochondrial dysfunction in inflammatory bowel diseases.
Fig. 3: Mitochondria in different stages of colorectal cancer.
Fig. 4: Inflammatory bowel diseases and colorectal cancer therapeutics involving mitochondria.

Similar content being viewed by others

References

  1. Liu, C. Y., Cham, C. M. & Chang, E. B. Epithelial wound healing in inflammatory bowel diseases: the next therapeutic frontier. Transl. Res. 236, 35–51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alison, M. R. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int. J. Exp. Pathol. 101, 132–151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, H., Jeon, J. H. & Kim, E. S. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front. Immunol. 14, 1219422 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, W. et al. Association between oxidative stress, mitochondrial function of peripheral blood mononuclear cells and gastrointestinal cancers. J. Transl. Med. 21, 107 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rausser, S. et al. Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. eLife 10, e70899 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agrawal, M., Allin, K. H., Petralia, F., Colombel, J. F. & Jess, T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat. Rev. Gastroenterol. Hepatol. 19, 399–409 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Furey, T. S., Sethupathy, P. & Sheikh, S. Z. Redefining the IBDs using genome-scale molecular phenotyping. Nat. Rev. Gastroenterol. Hepatol. 16, 296–311 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raine, T. & Danese, S. Breaking through the therapeutic ceiling: what will it take? Gastroenterology 162, 1507–1511 (2022).

    Article  PubMed  Google Scholar 

  9. Kotla, N. G. & Rochev, Y. IBD disease-modifying therapies: insights from emerging therapeutics. Trends Mol. Med. 29, 241–253 (2023).

    Article  PubMed  Google Scholar 

  10. Aldars-Garcia, L., Gisbert, J. P. & Chaparro, M. Metabolomics insights into inflammatory bowel disease: a comprehensive review. Pharmaceuticals 14, 1190 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haberman, Y. et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat. Commun. 10, 38 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kugathasan, S. et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet 389, 1710–1718 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hsieh, S. Y. et al. Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics 6, 5322–5331 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Mottawea, W. et al. Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease. Nat. Commun. 7, 13419 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alula, K. M. et al. Targeting mitochondrial damage as a therapeutic for ileal Crohn’s disease. Cells 10, 1349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Delpre, G., Avidor, I., Steinherz, R., Kadish, U. & Ben-Bassat, M. Ultrastructural abnormalities in endoscopically and histologically normal and involved colon in ulcerative colitis. Am. J. Gastroenterol. 84, 1038–1046 (1989).

    CAS  PubMed  Google Scholar 

  17. O’Morain, C., Smethurst, P., Levi, J. & Peters, T. J. Subcellular fractionation of rectal biopsy homogenates from patients with inflammatory bowel disease. Scand. J. Gastroenterol. 20, 209–214 (1985).

    Article  PubMed  Google Scholar 

  18. Soderholm, J. D. et al. Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn’s disease. Gut 50, 307–313 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sifroni, K. G. et al. Mitochondrial respiratory chain in the colonic mucosal of patients with ulcerative colitis. Mol. Cell. Biochem. 342, 111–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Santhanam, S. et al. Mitochondrial electron transport chain complex dysfunction in the colonic mucosa in ulcerative colitis. Inflamm. Bowel Dis. 18, 2158–2168 (2012).

    Article  PubMed  Google Scholar 

  21. Santhanam, S., Venkatraman, A. & Ramakrishna, B. S. Impairment of mitochondrial acetoacetyl CoA thiolase activity in the colonic mucosa of patients with ulcerative colitis. Gut 56, 1543–1549 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jans, D. & Cleynen, I. The genetics of non-monogenic IBD. Hum. Genet. 142, 669–682 (2023).

    Article  PubMed  Google Scholar 

  23. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ho, G. T. et al. MDR1 deficiency impairs mitochondrial homeostasis and promotes intestinal inflammation. Mucosal Immunol. 11, 120–130 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Ozsoy, M. et al. Role of energy metabolism and mitochondrial function in inflammatory bowel disease. Inflamm. Bowel Dis. 28, 1443–1450 (2022).

    Article  PubMed  Google Scholar 

  26. Balasubramanian, I. & Gao, N. From sensing to shaping microbiota: insights into the role of NOD2 in intestinal homeostasis and progression of Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G7–G13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Saxena, A., Lopes, F., Poon, K. K. H. & McKay, D. M. Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G26–G38 (2017).

    Article  PubMed  Google Scholar 

  28. Alula, K. M. & Theiss, A. L. Autophagy in Crohn’s disease: converging on dysfunctional innate immunity. Cells 12, 1779 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hudson, G., Gomez-Duran, A., Wilson, I. J. & Chinnery, P. F. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. PLoS Genet. 10, e1004369 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rosa, A. et al. Ulcerative colitis is under dual (mitochondrial and nuclear) genetic control. Inflamm. Bowel Dis. 22, 774–781 (2016).

    Article  PubMed  Google Scholar 

  31. Baker, K. T. et al. Mitochondrial DNA mutations are associated with ulcerative colitis preneoplasia but tend to be negatively selected in cancer. Mol. Cancer Res. 17, 488–498 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Pacheu-Grau, D., Rucktaschel, R. & Deckers, M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2, 184–199 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Finsterer, J. & Frank, M. Gastrointestinal manifestations of mitochondrial disorders: a systematic review. Ther. Adv. Gastroenterol. 10, 142–154 (2017).

    Article  Google Scholar 

  34. Gusic, M. & Prokisch, H. Genetic basis of mitochondrial diseases. FEBS Lett. 595, 1132–1158 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, M. & Chang, E. B. Inflammatory bowel diseases (IBD) and the microbiome — searching the crime scene for clues. Gastroenterology 160, 524–537 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Ogino, S. et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 67, 1168–1180 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Hirose, Y. & Taniguchi, K. Intratumoral metabolic heterogeneity of colorectal cancer. Am. J. Physiol. Cell Physiol. 35, C1073–C1084 (2023).

    Article  Google Scholar 

  38. Nguyen, H. T. & Duong, H. Q. The molecular characteristics of colorectal cancer: implications for diagnosis and therapy. Oncol. Lett. 16, 9–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Zhao, R. Z., Jiang, S., Zhang, L. & Yu, Z. B. Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int. J. Mol. Med. 44, 3–15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Alcazar-Fabra, M., Navas, P. & Brea-Calvo, G. Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochim. Biophys. Acta 1857, 1073–1078 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Chandel, N. S. Navigating Metabolism (Cold Spring Harbor Laboratory Press, 2015).

  42. Helander, H. F. & Fandriks, L. Surface area of the digestive tract — revisited. Scand. J. Gastroenterol. 49, 681–689 (2014).

    Article  PubMed  Google Scholar 

  43. Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    Article  PubMed  Google Scholar 

  45. Rodriguez-Colman, M. J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–427 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mihaylova, M. M. et al. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22, 769–778.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, L. et al. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology 158, 985–999.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Stine, R. R. et al. PRDM16 maintains homeostasis of the intestinal epithelium by controlling region-specific metabolism. Cell Stem Cell 25, 830–845.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schell, J. C. et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol. 19, 1027–1036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jackson, D. N. et al. Mitochondrial dysfunction during loss of prohibitin 1 triggers Paneth cell defects and ileitis. Gut 69, 1928–1938 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Khaloian, S. et al. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn’s disease recurrence. Gut 69, 1939–1951 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Ludikhuize, M. C. et al. Mitochondria define intestinal stem cell differentiation downstream of a FOXO/Notch axis. Cell Metab. 32, 889–900.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Stringari, C. et al. Metabolic trajectory of cellular differentiation in small intestine by phasor fluorescence lifetime microscopy of NADH. Sci. Rep. 2, 568 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Byndloss, M. X. et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Singhal, R. & Shah, Y. M. Oxygen battle in the gut: hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J. Biol. Chem. 295, 10493–10505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Verzi, M. P. & Shivdasani, R. A. Epigenetic regulation of intestinal stem cell differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 319, G189–G196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jadhav, U. et al. Acquired tissue-specific promoter bivalency is a basis for PRC2 necessity in adult cells. Cell 165, 1389–1400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de Sousa, E. M. F. & de Sauvage, F. J. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell 24, 54–64 (2019).

    Article  Google Scholar 

  60. Jones, J. C. et al. Cellular plasticity of Defa4(Cre)-expressing Paneth cells in response to notch activation and intestinal injury. Cell. Mol. Gastroenterol. Hepatol. 7, 533–554 (2019).

    Article  PubMed  Google Scholar 

  61. Tetteh, P. W. et al. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18, 203–213 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Westphalen, C. B. et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J. Clin. Invest. 124, 1283–1295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu, S. et al. Paneth cell multipotency induced by notch activation following injury. Cell Stem Cell 23, 46–59.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jadhav, U. et al. Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. Cell Stem Cell 21, 65–77.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, Y. et al. ROS signaling-induced mitochondrial Sgk1 expression regulates epithelial cell renewal. Proc. Natl Acad. Sci. USA 120, e2216310120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fan, Y. Y. et al. A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G1–G9 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang, G. et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol. Cell. Biol. 24, 8447–8456 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, W. et al. Olfactomedin 4 deletion improves male mouse glucose intolerance and insulin resistance induced by a high-fat diet. Endocrinology 159, 3235–3244 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taman, H. et al. Genome-wide DNA methylation in treatment-naive ulcerative colitis. J. Crohns Colitis 12, 1338–1347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. van der Flier, L. G., Haegebarth, A., Stange, D. E., van de Wetering, M. & Clevers, H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137, 15–17 (2009).

    Article  PubMed  Google Scholar 

  71. Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Meyer, J. N., Leuthner, T. C. & Luz, A. L. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology 391, 42–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Ul Fatima, N. & Ananthanarayanan, V. Mitochondrial movers and shapers: recent insights into regulators of fission, fusion and transport. Curr. Opin. Cell Biol. 80, 102150 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Formentini, L. et al. Mitochondrial ROS production protects the intestine from inflammation through functional M2 macrophage polarization. Cell Rep. 19, 1202–1213 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Urbauer, E., Rath, E. & Haller, D. Mitochondrial metabolism in the intestinal stem cell niche — sensing and signaling in health and disease. Front. Cell Dev. Biol. 8, 602814 (2020).

    Article  PubMed  Google Scholar 

  76. Brand, M. D. et al. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia–reperfusion injury. Cell Metab. 24, 582–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Levy, A. et al. Innate immune receptor NOD2 mediates LGR5(+) intestinal stem cell protection against ROS cytotoxicity via mitophagy stimulation. Proc. Natl Acad. Sci. USA 117, 1994–2003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Swanson, P. A. II et al. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc. Natl Acad. Sci. USA 108, 8803–8808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bhattacharyya, A., Chattopadhyay, R., Mitra, S. & Crowe, S. E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94, 329–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Esteras, N. & Abramov, A. Y. Nrf2 as a regulator of mitochondrial function: energy metabolism and beyond. Free Radic. Biol. Med. 189, 136–153 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Gureev, A. P., Shaforostova, E. A. & Popov, V. N. Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1alpha signaling pathways. Front. Genet. 10, 435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scarpulla, R. C. Nuclear control of respiratory gene expression in mammalian cells. J. Cell. Biochem. 97, 673–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Walker, B. R. & Moraes, C. T. Nuclear–mitochondrial interactions. Biomolecules 12, 427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Minocherhomji, S., Tollefsbol, T. O. & Singh, K. K. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 7, 326–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Santos, J. H. Mitochondria signaling to the epigenome: a novel role for an old organelle. Free Radic. Biol. Med. 170, 59–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Matilainen, O., Quiros, P. M. & Auwerx, J. Mitochondria and epigenetics — crosstalk in homeostasis and stress. Trends Cell Biol. 27, 453–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Stoccoro, A. & Coppede, F. Mitochondrial DNA methylation and human diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22094594 (2021).

  90. Howell, K. J. et al. DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154, 585–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Kelly, D. et al. Microbiota-sensitive epigenetic signature predicts inflammation in Crohn’s disease. JCI Insight 3, e122104 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kraiczy, J. et al. Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease. Mucosal Immunol. 9, 647–658 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Mokry, M. et al. Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium. Gastroenterology 146, 1040–1047 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Tsaprouni, L. G., Ito, K., Powell, J. J., Adcock, I. M. & Punchard, N. Differential patterns of histone acetylation in inflammatory bowel diseases. J. Inflamm. 8, 1 (2011).

    Article  CAS  Google Scholar 

  95. Heimerl, S. et al. Alterations in intestinal fatty acid metabolism in inflammatory bowel disease. Biochim. Biophys. Acta 1762, 341–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Roediger, W. E. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 2, 712–715 (1980).

    Article  CAS  PubMed  Google Scholar 

  97. GBD Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5, 17–30 (2020).

    Article  Google Scholar 

  98. Johnston, R. D. & Logan, R. F. What is the peak age for onset of IBD? Inflamm. Bowel Dis. 14, S4–S5 (2008).

    Article  PubMed  Google Scholar 

  99. Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Wells, J. M. et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G171–G193 (2017).

    Article  PubMed  Google Scholar 

  101. Kayama, H., Okumura, R. & Takeda, K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu. Rev. Immunol. 38, 23–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Saint-Georges-Chaumet, Y. & Edeas, M. Microbiota–mitochondria inter-talk: consequence for microbiota–host interaction. Pathog. Dis. 74, ftv096 (2016).

    Article  PubMed  Google Scholar 

  103. Chang, J. T. Pathophysiology of inflammatory bowel diseases. N. Engl. J. Med. 383, 2652–2664 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Ijssennagger, N., van der Meer, R. & van Mil, S. W. C. Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol. Med. 22, 190–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Sargent, A. L. et al. Quantitatively assessing the respiratory burst in innate immune cells. Methods Mol. Biol. 2614, 47–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Bourgonje, A. R. et al. Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol. Med. 26, 1034–1046 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Ghezzi, D. & Zeviani, M. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv. Exp. Med. Biol. 748, 65–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Bar, F. et al. Mitochondrial gene polymorphisms that protect mice from colitis. Gastroenterology 145, 1055–1063.e3 (2013).

    Article  PubMed  Google Scholar 

  109. Cunningham, K. E. et al. Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1alpha) protects against experimental murine colitis. J. Biol. Chem. 291, 10184–10200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Han, J., Yu, C., Souza, R. F. & Theiss, A. L. Prohibitin 1 modulates mitochondrial function of Stat3. Cell Signal. 26, 2086–2095 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lopez-Armada, M. J., Riveiro-Naveira, R. R., Vaamonde-Garcia, C. & Valcarcel-Ares, M. N. Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13, 106–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Biniecka, M. et al. Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis. Arthritis Res. Ther. 13, R121 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Garcia-Ruiz, I. et al. Uric acid and anti-TNF antibody improve mitochondrial dysfunction in ob/ob mice. Hepatology 44, 581–591 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Heller, S. et al. Reduced mitochondrial activity in colonocytes facilitates AMPKalpha2-dependent inflammation. FASEB J. 31, 2013–2025 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marchini, T. et al. Selective TNF-alpha targeting with infliximab attenuates impaired oxygen metabolism and contractile function induced by an acute exposure to air particulate matter. Am. J. Physiol. Heart Circ. Physiol. 309, H1621–H1628 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Billmeier, U., Dieterich, W., Neurath, M. F. & Atreya, R. Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J. Gastroenterol. 22, 9300–9313, (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, A. et al. Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am. J. Pathol. 184, 2516–2527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rao, R. Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front. Biosci. 13, 7210–7226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Merkwirth, C. et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 22, 476–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nijtmans, L. G. et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J. 19, 2444–2451 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang, M. et al. Mitochondria-associated ER membranes — the origin site of autophagy. Front. Cell Dev. Biol. 8, 595 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Grey, M. J. et al. The epithelial-specific ER stress sensor ERN2/IRE1beta enables host–microbiota crosstalk to affect colon goblet cell development. J. Clin. Invest. 132, e153519 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hasnain, S. Z. et al. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology 144, 357–368.e9 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Naama, M. et al. Autophagy controls mucus secretion from intestinal goblet cells by alleviating ER stress. Cell Host Microbe 31, 433–446.e4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhao, Z. et al. Bisphenol A inhibits mucin 2 secretion in intestinal goblet cells through mitochondrial dysfunction and oxidative stress. Biomed. Pharmacother. 111, 901–908 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Wei, J. et al. Upregulation of RIP3 promotes necroptosis via a ROS-dependent NF-kappaB pathway to induce chronic inflammation in HK-2 cells. Mol. Med. Rep. 24, 783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang, Z. et al. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat. Cell Biol. 20, 186–197 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Patankar, J. V. & Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat. Rev. Gastroenterol. Hepatol. 17, 543–556 (2020).

    Article  PubMed  Google Scholar 

  130. Dhuriya, Y. K. & Sharma, D. Necroptosis: a regulated inflammatory mode of cell death. J. Neuroinflammation 15, 199 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Prochnicki, T. & Latz, E. Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab. 26, 71–93 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Kummer, J. A. et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J. Histochem. Cytochem. 55, 443–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Zhen, Y. & Zhang, H. NLRP3 inflammasome and inflammatory bowel disease. Front. Immunol. 10, 276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yu, P. et al. Pyroptosis: mechanisms and diseases. Signal. Transduct. Target. Ther. 6, 128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Weindel, C. G. et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 185, 3214–3231.e23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bauer, C. et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59, 1192–1199 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, L. et al. The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans. J. Crohns Colitis 11, 737–750 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Dashdorj, A. et al. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. BMC Med. 11, 178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Allen, I. C. et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 207, 1045–1056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32, 367–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Hirota, S. A. et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm. Bowel Dis. 17, 1359–1372 (2011).

    Article  PubMed  Google Scholar 

  142. Lebeis, S. L., Powell, K. R., Merlin, D., Sherman, M. A. & Kalman, D. Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Infect. Immun. 77, 604–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Takagi, H. et al. Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand. J. Gastroenterol. 38, 837–844 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Boyapati, R. K. et al. Mitochondrial DNA is a pro-inflammatory damage-associated molecular pattern released during active IBD. Inflamm. Bowel Dis. 24, 2113–2122 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vrablicova, Z. et al. Nuclear and mitochondrial circulating cell-free DNA is increased in patients with inflammatory bowel disease in clinical remission. Front. Med. 7, 593316 (2020).

    Article  Google Scholar 

  150. Boyapati, R. et al. Mitochondrial DNA is a pro-inflammatory damage-associated molecular pattern (DAMP) released during active IBD. Inflamm. Bowel Dis. 24, 2113–2113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Verma, A. et al. The role of the mitochondrial protein VDAC1 in inflammatory bowel disease: a potential therapeutic target. Mol. Ther. 30, 726–744 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Chen, C., Yan, W., Tao, M. & Fu, Y. NAD(+) metabolism and immune regulation: new approaches to inflammatory bowel disease therapies. Antioxidants 12, 1230 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kang, Y. H. et al. Metabolic analyses reveal dysregulated NAD+ metabolism and altered mitochondrial state in ulcerative colitis. PLoS ONE 17, e0273080 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Novak, E. A. et al. Epithelial NAD(+) depletion drives mitochondrial dysfunction and contributes to intestinal inflammation. Front. Immunol. 14, 1231700 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xue, X., Miao, Y. & Wei, Z. Nicotinamide adenine dinucleotide metabolism: driving or counterbalancing inflammatory bowel disease? FEBS Lett. 597, 1179–1192 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S–890S (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ji, Z., Liu, G. H. & Qu, J. Mitochondrial sirtuins, metabolism, and aging. J. Genet. Genomics 49, 287–298 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Igarashi, M. & Guarente, L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166, 436–450 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Gerner, R. R. et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut 67, 1813–1823 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Lv, Q. et al. Norisoboldine, a natural AhR agonist, promotes Treg differentiation and attenuates colitis via targeting glycolysis and subsequent NAD(+)/SIRT1/SUV39H1/H3K9me3 signaling pathway. Cell Death Dis. 9, 258 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Furuta, G. T. et al. Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J. Exp. Med. 193, 1027–1034 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Colgan, S. P., Wang, R. X., Hall, C. H. T., Bhagavatula, G. & Lee, J. S. Revisiting the ‘starved gut’ hypothesis in inflammatory bowel disease. Immunometabolism 5, e0016 (2023).

    Article  PubMed  Google Scholar 

  164. Andoh, A. Physiological role of gut microbiota for maintaining human health. Digestion 93, 176–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sheehan, D., Moran, C. & Shanahan, F. The microbiota in inflammatory bowel disease. J. Gastroenterol. 50, 495–507 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Article  Google Scholar 

  168. Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Joyce, S. A. & Gahan, C. G. Bile acid modifications at the microbe–host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu. Rev. Food Sci. Technol. 7, 313–333 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Macfarlane, S. & Macfarlane, G. T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Hofmann, A. F. Bile acids: the good, the bad, and the ugly. N. Physiol. Sci. 14, 24–29 (1999).

    CAS  Google Scholar 

  174. Pavlidis, P. et al. Systematic review: bile acids and intestinal inflammation-luminal aggressors or regulators of mucosal defence? Aliment. Pharmacol. Ther. 42, 802–817 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Litvak, Y. & Baumler, A. J. Microbiota-nourishing immunity: a guide to understanding our microbial self. Immunity 51, 214–224 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Litvak, Y., Byndloss, M. X. & Baumler, A. J. Colonocyte metabolism shapes the gut microbiota. Science 362, eaat9076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Tiffany, C. R. & Baumler, A. J. Dysbiosis: from fiction to function. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G602–G608 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pena-Cearra, A. et al. Mitochondrial dysfunction promotes microbial composition that negatively impacts on ulcerative colitis development and progression. npj Biofilms Microbiomes 9, 74 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rath, E. & Haller, D. Intestinal epithelial cell metabolism at the interface of microbial dysbiosis and tissue injury. Mucosal Immunol. 15, 595–604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Deleu, S., Machiels, K., Raes, J., Verbeke, K. & Vermeire, S. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? eBioMedicine 66, 103293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Litvak, Y., Byndloss, M. X., Tsolis, R. M. & Baumler, A. J. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 39, 1–6 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Rivera-Chavez, F., Lopez, C. A. & Baumler, A. J. Oxygen as a driver of gut dysbiosis. Free Radic. Biol. Med. 105, 93–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Ray, K. Mitochondrial dysfunction in Crohn’s disease. Nat. Rev. Gastroenterol. Hepatol. 17, 260 (2020).

    Article  PubMed  Google Scholar 

  184. Alula, K. M. et al. Interplay of gut microbiota and host epithelial mitochondrial dysfunction is necessary for the development of spontaneous intestinal inflammation in mice. Microbiome 11, 256 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Miyoshi, H. et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J. 36, 5–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Quiros, M. & Nusrat, A. Contribution of wound-associated cells and mediators in orchestrating gastrointestinal mucosal wound repair. Annu. Rev. Physiol. 81, 189–209 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Eastwood, G. L. Gastrointestinal epithelial renewal. Gastroenterology 72, 962–975 (1977).

    Article  CAS  PubMed  Google Scholar 

  189. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  190. Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Berger, E. et al. Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat. Commun. 7, 13171 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Mancini, N. L. et al. Perturbed mitochondrial dynamics is a novel feature of colitis that can be targeted to lessen disease. Cell. Mol. Gastroenterol. Hepatol. 10, 287–307 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bhogoju, S. et al. A novel drug therapy induces mitochondrial biogenesis and attenuates colitis. Inflamm. Bowel Dis. 29, S55–S55 (2023).

    Article  Google Scholar 

  195. Paladines, N. et al. Metabolic reprogramming through mitochondrial biogenesis drives adenosine anti-inflammatory effects: new mechanism controlling gingival fibroblast hyper-inflammatory state. Front. Immunol. 14, 1148216 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Thankam, F. G. et al. Amplification of mitochondrial activity in the healing response following rotator cuff tendon injury. Sci. Rep. 8, 17027 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Willenborg, S. et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metab. 33, 2398–2414.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Ussakli, C. H. et al. Mitochondria and tumor progression in ulcerative colitis. J. Natl Cancer Inst. 105, 1239–1248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Onishi, M., Yamano, K., Sato, M., Matsuda, N. & Okamoto, K. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 40, e104705 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Foerster, E. G. et al. How autophagy controls the intestinal epithelial barrier. Autophagy 18, 86–103 (2022).

    Article  CAS  PubMed  Google Scholar 

  201. Nguyen, H. T., Lapaquette, P., Bringer, M. A. & Darfeuille-Michaud, A. Autophagy and Crohn’s disease. J. Innate Immun. 5, 434–443 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Matsuzawa-Ishimoto, Y. et al. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. J. Exp. Med. 214, 3687–3705 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Vincent, G. et al. Nix-mediated mitophagy modulates mitochondrial damage during intestinal inflammation. Antioxid. Redox Signal. 33, 1–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Alula, K. M. et al. Inner mitochondrial membrane protein Prohibitin 1 mediates Nix-induced, Parkin-independent mitophagy. Sci. Rep. 13, 18 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Centelles, J. J. General aspects of colorectal cancer. ISRN Oncol. 2012, 139268 (2012).

    PubMed  PubMed Central  Google Scholar 

  206. Morgan, E. et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 72, 338–344 (2023).

    Article  PubMed  Google Scholar 

  207. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  208. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Shih, I.-M. et al. Top-down morphogenesis of colorectal tumors. Proc. Natl Acad. Sci. USA 98, 2640–2645 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kasi, A. et al. Molecular pathogenesis and classification of colorectal carcinoma. Curr. Colorectal Cancer Rep. 16, 97–106 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Baker, A.-M. et al. Evolutionary history of human colitis-associated colorectal cancer. Gut 68, 985–995 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Warburg, O. The Metabolism of Tumours (Constable, 1930).

  215. Li, W. et al. Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J. Transl. Med. 18, 92 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Nantasupha, C., Thonusin, C., Charoenkwan, K., Chattipakorn, S. & Chattipakorn, N. Metabolic reprogramming in epithelial ovarian cancer. Am. J. Transl. Res. 13, 9950–9973 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Cui, J. et al. FOXM1 promotes the Warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin. Cancer Res. 20, 2595–2606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Al-Khayal, K. et al. Identification of the TP53-induced glycolysis and apoptosis regulator in various stages of colorectal cancer patients. Oncol. Rep. 35, 1281–1286 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Graziano, F. et al. Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer. Pharmacogenomics J. 17, 258–264 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Chance, B. & Hess, B. On the control of metabolism in ascites tumor cell suspensions. Ann. N. Y. Acad. Sci. 63, 1008–1016 (1956).

    Article  CAS  PubMed  Google Scholar 

  221. Burk, D. & Schade, A. L. On respiratory impairment in cancer cells. Science 124, 270–272 (1956).

    Article  CAS  PubMed  Google Scholar 

  222. Lunt, S. Y. & Heiden, M. G. V. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  223. Kirsch, M. & De Groot, H. NAD(P)H, a directly operating antioxidant? FASEB J. 15, 1569–1574 (2001).

    Article  CAS  PubMed  Google Scholar 

  224. Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001).

    Article  CAS  PubMed  Google Scholar 

  225. Vaupel, P., Schmidberger, H. & Mayer, A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 95, 912–919 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Mana, M. D. et al. High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep. 35, 109212 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zhao, Y. et al. Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Sci. Rep. 9, 19180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Taylor, R. et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Investig. 112, 1351–1360 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Greaves, L. C. et al. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc. Natl Acad. Sci. USA 103, 714–719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ju, Y. S. et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife 3, e02935 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Guo, W. et al. Mutational signature of mtDNA confers mechanistic insight into oxidative metabolism remodeling in colorectal cancer. Theranostics 13, 324–338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Smith, A. L. et al. Age-associated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. Nat. Cancer 1, 976–989 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Mou, J.-j et al. Mitochondrial DNA content reduction induces aerobic glycolysis and reversible resistance to drug-induced apoptosis in SW480 colorectal cancer cells. Biomed. Pharmacother. 103, 729–737 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Bensard, C. L. et al. Regulation of tumor initiation by the mitochondrial pyruvate carrier. Cell Metab. 31, 284–300.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Schell, J. C. et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 56, 400–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Darvey, I. G. What factors are responsible for the greater yield of ATP per carbon atom when fatty acids are completely oxidised to CO2 and water compared with glucose? Biochem. Educ. 27, 209–210 (1999).

    Article  CAS  Google Scholar 

  237. Lin, C.-S. et al. Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncol. Rep. 39, 316–330 (2018).

    CAS  PubMed  Google Scholar 

  238. Sun, X. et al. Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal. Transduct. Target. Ther. 3, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Rebane-Klemm, E. et al. Mitochondrial respiration in KRAS and BRAF mutated colorectal tumors and polyps. Cancers 12, 815 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hernández-López, R. et al. Mitochondrial function differences between tumor tissue of human metastatic and premetastatic CRC. Biology 11, 293 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Wen, Y. A. et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis. 8, e2593 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wang, Y.-n et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene 37, 6025–6040 (2018).

    Article  CAS  PubMed  Google Scholar 

  243. Devenport, S. N. et al. Colorectal cancer cells utilize autophagy to maintain mitochondrial metabolism for cell proliferation under nutrient stress. JCI Insight 6, e138835 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Wise, D. R. & Thompson, C. B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35, 427–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wang, T. et al. MTA1, a novel ATP synthase complex modulator, enhances colon cancer liver metastasis by driving mitochondrial metabolism reprogramming. Adv. Sci. 10, 2300756 (2023).

    Article  CAS  Google Scholar 

  246. Song, I.-S. et al. FOXM1-induced PRX3 regulates stemness and survival of colon cancer cells via maintenance of mitochondrial function. Gastroenterology 149, 1006–1016.e9 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Denise, C. et al. 5-Fluorouracil resistant colon cancer cells are addicted to OxPHOS to survive and enhance stem-like traits. Oncotarget 6, 41706–41721 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Yun, C. W., Han, Y.-S. & Lee, S. H. PGC-1α controls mitochondrial biogenesis in drug-resistant colorectal cancer cells by regulating endoplasmic reticulum stress. Int. J. Mol. Sci. 20, 1707 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Disoma, C., Zhou, Y., Li, S., Peng, J. & Xia, Z. Wnt/β-catenin signaling in colorectal cancer: is therapeutic targeting even possible? Biochimie 195, 39–53 (2022).

    Article  CAS  PubMed  Google Scholar 

  250. Bernkopf, D. B. et al. Pgam5 released from damaged mitochondria induces mitochondrial biogenesis via Wnt signaling. J. Cell Biol. 217, 1383–1394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Zhang, W. et al. An underlying mechanism of dual Wnt inhibition and AMPK activation: mitochondrial uncouplers masquerading as Wnt inhibitors. J. Med. Chem. 62, 11348–11358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Costa, R. et al. Impaired mitochondrial ATP production downregulates Wnt signaling via ER stress induction. Cell Rep. 28, 1949–1960.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  253. Wen, Y.-A. et al. The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer. Cell Death Differ. 26, 1955–1969 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hu, J. L. et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial–mesenchymal transition in colorectal cancer. Mol. Cancer 18, 91 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Pate, K. T. et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33, 1454–1473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Xiong, X. et al. Activation of Drp1 promotes fatty acids-induced metabolic reprograming to potentiate Wnt signaling in colon cancer. Cell Death Differ. 29, 1913–1927 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Suman, S., Das, T. P., Ankem, M. K. & Damodaran, C. Targeting notch signaling in colorectal cancer. Curr. Colorectal Cancer Rep. 10, 411–416 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Perumalsamy, L. R., Nagala, M. & Sarin, A. Notch-activated signaling cascade interacts with mitochondrial remodeling proteins to regulate cell survival. Proc. Natl Acad. Sci. USA 107, 6882–6887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Gopalakrishnan, N., Sivasithamparam, N. D. & Devaraj, H. Synergistic association of Notch and NFκB signaling and role of Notch signaling in modulating epithelial to mesenchymal transition in colorectal adenocarcinoma. Biochimie 107, 310–318 (2014).

    Article  CAS  PubMed  Google Scholar 

  260. Chen, B. et al. PTEN-induced kinase PINK1 supports colorectal cancer growth by regulating the labile iron pool. J. Biol. Chem. 299, 104691 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Huang, C.-Y. et al. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell Death Dis. 9, 1004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Jiang, T. et al. Cirsiliol regulates mitophagy in colon cancer cells via STAT3 signaling. Cancer Cell Int. 22, 304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Chen, W. T., Yang, H. B., Ke, T. W., Liao, W. L. & Hung, S. Y. Serum DJ-1 is a biomarker of colorectal cancer and DJ-1 activates mitophagy to promote colorectal cancer progression. Cancers 13, 4151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Gao, H. et al. DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy. J. Mol. Biol. 423, 232–248 (2012).

    Article  CAS  PubMed  Google Scholar 

  265. Ziegler, P. K. et al. Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis. Cell 174, 88–101.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Boyle, K. A. et al. Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. J. Biol. Chem. 293, 14891–14904 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. D’Onofrio, N. et al. Colorectal cancer apoptosis induced by dietary δ-valerobetaine involves PINK1/parkin dependent-mitophagy and SIRT3. Int. J. Mol. Sci. 22, 8117 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Liang, L. et al. Oxymatrine suppresses colorectal cancer progression by inhibiting NLRP3 inflammasome activation through mitophagy induction in vitro and in vivo. Phytother. Res. 37, 3342–3362 (2023).

    Article  CAS  PubMed  Google Scholar 

  269. Zhang, X. et al. Targeting mitochondrial dysfunction in neurodegenerative diseases: expanding the therapeutic approaches by plant-derived natural products. Pharmaceuticals 16, 277 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Rousseaux, C. et al. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J. Exp. Med. 201, 1205–1215 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Chen, Q. L., Yin, H. R., He, Q. Y. & Wang, Y. Targeting the NLRP3 inflammasome as new therapeutic avenue for inflammatory bowel disease. Biomed. Pharmacother. 138, 111442 (2021).

    Article  CAS  PubMed  Google Scholar 

  272. Lewis, J. D. et al. Rosiglitazone for active ulcerative colitis: a randomized placebo-controlled trial. Gastroenterology 134, 688–695 (2008).

    Article  CAS  PubMed  Google Scholar 

  273. Yao, Q. et al. 2′-Fucosyllactose ameliorates inflammatory bowel disease by modulating gut microbiota and promoting MUC2 expression. Front. Nutr. 9, 822020 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Mezoff, E. A. et al. The human milk oligosaccharide 2′-fucosyllactose augments the adaptive response to extensive intestinal. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G427–G438 (2016).

    Article  PubMed  Google Scholar 

  275. Tseng, C. H. Metformin use is associated with a lower risk of inflammatory bowel disease in patients with type 2 diabetes mellitus. J. Crohns Colitis 15, 64–73 (2021).

    Article  PubMed  Google Scholar 

  276. Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3, e02242 (2014).

    Google Scholar 

  277. Din, F. V. N. et al. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142, 1504–1515.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  278. Hu, F. et al. Penicillin disrupts mitochondrial function and induces autophagy in colorectal cancer cell lines. Oncol. Lett. 22, 691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Schwab, M. et al. PPARgamma is involved in mesalazine-mediated induction of apoptosis and inhibition of cell growth in colon cancer cells. Carcinogenesis 29, 1407–1414 (2008).

    Article  CAS  PubMed  Google Scholar 

  280. Arnold, C. et al. The mitochondrial disruptor devimistat (CPI-613) synergizes with genotoxic anticancer drugs in colorectal cancer therapy in a Bim-dependent manner. Mol. Cancer Ther. 21, 100–112 (2022).

    Article  CAS  PubMed  Google Scholar 

  281. Tomimoto, A. et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci. 99, 2136–2141 (2008).

    Article  CAS  PubMed  Google Scholar 

  282. Hosono, K. et al. Metformin suppresses azoxymethane‐induced colorectal aberrant crypt foci by activating AMP‐activated protein kinase. Mol. Carcinog. 49, 662–671 (2010).

    Article  CAS  PubMed  Google Scholar 

  283. Zimmermann, K. C., Waterhouse, N. J., Goldstein, J. C., Schuler, M. & Green, D. R. Aspirin induces apoptosis through release of cytochrome c from mitochondria. Neoplasia 2, 505–513 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Corona, J. C. & Duchen, M. R. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic. Biol. Med. 100, 153–163 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Chen, Q., Ruan, D., Shi, J., Du, D. & Bian, C. The multifaceted roles of natural products in mitochondrial dysfunction. Front. Pharmacol. 14, 1093038 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Vatn, S. S. et al. Mucosal gene transcript signatures in treatment naive inflammatory bowel disease: a comparative analysis of disease to symptomatic and healthy controls in the European IBD-Character Cohort. Clin. Exp. Gastroenterol. 15, 5–25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Yu, Y. R. & Rodriguez, J. R. Clinical presentation of Crohn’s, ulcerative colitis, and indeterminate colitis: symptoms, extraintestinal manifestations, and disease phenotypes. Semin. Pediatr. Surg. 26, 349–355 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health R01-DK117001 (A.L.T.), National Institutes of Health R01-DK095662 (T.A.B.), Crohn’s Colitis Foundation SRA 900820 (A.L.T.), Crohn’s and Colitis Foundation, Litwin Award 993820 (T.A.B.), Veteran’s Affairs BLRD MERIT IBX005288 (A.L.T.), Veteran’s Affairs CSRD MERIT 1I01CX001353 (T.A.B.) and GI & Liver Innate Immune Program (GALIIP) — University of Colorado Anschutz (A.L.T.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. A.L.T. and T.A.B. contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Arianne L. Theiss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Lee Denson, Dirk Haller, Kevin Mollen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NCT00065065: https://clinicaltrials.gov/study/NCT00065065

NCT00790543: https://clinicaltrials.gov/study/NCT00790543

NCT01536535: https://clinicaltrials.gov/study/NCT01536535

NCT02232152: https://clinicaltrials.gov/study/NCT02232152

NCT04276740: https://clinicaltrials.gov/study/NCT04276740

NCT05539625: https://clinicaltrials.gov/study/NCT05539625

NCT05561062: https://clinicaltrials.gov/study/NCT05561062

NCT05561738: https://clinicaltrials.gov/study/NCT05561738

NCT05567068: https://clinicaltrials.gov/study/NCT05567068

NCT05753267: https://clinicaltrials.gov/study/NCT05753267

NCT05781698: https://clinicaltrials.gov/study/NCT05781698

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, P.S., Kapur, N., Barrett, T.A. et al. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol (2024). https://doi.org/10.1038/s41575-024-00931-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-024-00931-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing