Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemomechanical failure in layered oxide cathodes caused by rotational stacking faults

Abstract

Electrochemomechanical degradation is one of the most common causes of capacity deterioration in high-energy-density cathodes, particularly intercalation-based layered oxides. Here we reveal the presence of rotational stacking faults (RSFs) in layered lithium transition-metal oxides, arising from specific stacking sequences at different angles, and demonstrate their critical role in determining structural/electrochemical stability. Our combined experiments and calculations show that RSFs facilitate oxygen dimerization and transition-metal migration in layered oxides, fostering microcrack nucleation/propagation concurrently with cumulative electrochemomechanical degradation on cycling. We further show that thermal defect annihilation as a potential solution can suppress RSFs, reducing microcracks and enhancing cyclability in lithium-rich layered cathodes. The common but previously overlooked occurrence of RSFs suggests a new synthesis guideline of high-energy-density layered oxide cathodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RSFs in layered structures.
Fig. 2: Correlation between RSFs and planar cracking in layered structures.
Fig. 3: Thermal effects to annihilate RSFs.
Fig. 4: Suppression of electrochemomechanical degradation through thermal annihilation.

Similar content being viewed by others

Data availability

All relevant experimental and computational data within the article are available from the corresponding author upon reasonable request.

References

  1. Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Jang, H.-Y. et al. Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes. Nat. Commun. 15, 1288 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article  CAS  Google Scholar 

  5. Li, Y. et al. Degradation by kinking in layered cathode materials. ACS Energy Lett. 6, 3960–3969 (2021).

    Article  CAS  Google Scholar 

  6. Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, U.-H. et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 5, 860–869 (2020).

    Article  CAS  Google Scholar 

  8. Park, G.-T. et al. Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries. Energy Environ. Sci. 14, 6616–6626 (2021).

    Article  CAS  Google Scholar 

  9. Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, Q. et al. Ni–Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode. Nano Energy 76, 105021 (2020).

    Article  CAS  Google Scholar 

  11. Meng, X.-H. et al. Kinetic origin of planar gliding in single-crystalline Ni-rich cathodes. J. Am. Chem. Soc. 144, 11338–11347 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Song, J.-H. et al. Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes. Nat. Commun. 14, 4149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ikeda, N., Konuma, I., Rajendra, H. B., Aida, T. & Yabuuchi, N. Why is the O3 to O1 phase transition hindered in LiNiO2 on full delithiation? J. Mater. Chem. A 9, 15963–15967 (2021).

    Article  CAS  Google Scholar 

  14. Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Eum, D. et al. Effects of cation superstructure ordering on oxygen redox stability in O2-type lithium-rich layered oxides. Energy Environ. Sci. 16, 673–686 (2023).

    Article  CAS  Google Scholar 

  16. Gabrisch, H., Yazami, R. & Fultz, B. The character of dislocations in LiCoO2. Electrochem. Solid-State Lett. 5, A111 (2002).

    Article  CAS  Google Scholar 

  17. Hong, Y.-S. et al. Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping. Chem 6, 2759–2769 (2020).

    Article  CAS  Google Scholar 

  18. Warner, J. H., Rümmeli, M. H., Gemming, T., Büchner, B. & Briggs, G. A. D. Direct imaging of rotational stacking faults in few layer graphene. Nano Lett. 9, 102–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Li, Z. et al. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2. Sci. Rep. 7, 8323 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bréger, J. et al. High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2575–2585 (2005).

    Article  Google Scholar 

  21. Zhu, Y., Ophus, C., Ciston, J. & Wang, H. Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images. Acta Mater. 61, 5646–5663 (2013).

    Article  CAS  Google Scholar 

  22. Fan, Z. Y., Rong, G., Newman, N. & Smith, D. J. Defect annihilation in AlN thin films by ultrahigh temperature processing. Appl. Phys. Lett. 76, 1839–1841 (2000).

    Article  CAS  Google Scholar 

  23. Yamaguchi, M., Yamamoto, A., Tachikawa, M., Itoh, Y. & Sugo, M. Defect reduction effects in GaAs on Si substrates by thermal annealing. Appl. Phys. Lett. 53, 2293–2295 (1988).

    Article  CAS  Google Scholar 

  24. Matsunaga, T. et al. Dependence of structural defects in Li2MnO3 on synthesis temperature. Chem. Mater. 28, 4143–4150 (2016).

    Article  CAS  Google Scholar 

  25. Wang, R. et al. Atomic structure of Li2MnO3 after partial delithiation and re-lithiation. Adv. Energy Mater. 3, 1358–1367 (2013).

    Article  CAS  Google Scholar 

  26. Gao, A. et al. Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nat. Sustain. 5, 214–224 (2022).

    Article  Google Scholar 

  27. Khorsand Zak, A., Abd. Majid, W. H., Abrishami, M. E. & Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011).

    Article  CAS  Google Scholar 

  28. Xu, G.-L. et al. Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nat. Commun. 13, 436 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  CAS  Google Scholar 

  30. Eum, D. et al. Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nat. Mater. 21, 664–672 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  32. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  34. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  35. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A13039400, 2022R1A6A3A01086197 and 2021R1C1C2004527) as well as by the Korean government (MSIT) (no. RS-2023-00261543). This work was also supported by the Center for Nanoparticle Research at the Institute for Basic Science (IBS) (IBS-R006-A2) and LG Energy Solution.

Author information

Authors and Affiliations

Authors

Contributions

D.E. and K. Kang conceived the original idea of this study, and D.E., S.-O.P., H.-Y.J. and K. Kang designed this research project. D.E. and H.-Y.J. conducted and analysed all the experiments, with constructive advice from Y.J., S.H. and K. Kim. S.-O.P. mainly performed all the computational calculations, and J.-H.S. contributed with the preliminary results for the DFT calculations. D.E., S.-O.P., H.-Y.J. and K. Kang wrote the paper together, and K. Kang supervised all aspects of the project.

Corresponding author

Correspondence to Kisuk Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Hui Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8 and Figs. 1–24.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eum, D., Park, SO., Jang, HY. et al. Electrochemomechanical failure in layered oxide cathodes caused by rotational stacking faults. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01899-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing