Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures

Abstract

Efficient and deterministic nonlinear phononic interactions could revolutionize classical and quantum information processing at radio frequencies in much the same way that nonlinear photonic interactions have at optical frequencies. Here we show that in the important class of phononic materials that are piezoelectric, deterministic nonlinear phononic interactions can be enhanced by orders of magnitude via the heterogeneous integration of high-mobility semiconductor materials. To this end, a lithium niobate and indium gallium arsenide heterostructure is utilized to produce the most efficient three- and four-wave phononic mixing to date, to the best of our knowledge. We then show that the conversion efficiency can be further enhanced by applying semiconductor bias fields that amplify the phonons. We present a theoretical model that accurately predicts the three-wave mixing efficiencies in this work and extrapolate that these nonlinearities can be enhanced far beyond what is demonstrated here by confining phonons to smaller dimensions in waveguides and optimizing the semiconductor material properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phononic frequency mixing mediated by an acoustoelectric nonlinearity.
Fig. 2: Sum-frequency generation.
Fig. 3: Control of the nonlinearity and mixing efficiency.
Fig. 4: Four-wave mixing.
Fig. 5: Large-bandwidth frequency conversion measurements.
Fig. 6: Towards stronger nonlinear interactions.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hendrickson, S. M., Foster, A. C., Camacho, R. M. & Clader, B. D. Integrated nonlinear photonics: emerging applications and ongoing challenges. J. Opt. Soc. Am. B 31, 3193–3203 (2014).

    Article  CAS  Google Scholar 

  2. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

    Article  CAS  Google Scholar 

  3. Moody, G., Chang, L., Steiner, T. J. & Bowers, J. E. Chip-scale nonlinear photonics for quantum light generation. AVS Quantum Sci. 2, 041702 (2020).

    Article  Google Scholar 

  4. Bers, A. & Cafarella, J. Surface state memory in surface acoustoelectric correlator. Appl. Phys. Lett. 25, 133–135 (1974).

    Article  Google Scholar 

  5. Cafarella, J. H., Brown, W., Stern, E. & Alusow, J. Acoustoelectric convolvers for programmable matched filtering in spread-spectrum systems. Proc. IEEE 64, 756–759 (1976).

    Article  Google Scholar 

  6. Kino, G. S. Acoustoelectric interactions in acoustic-surface-wave devices. Proc. IEEE 64, 724–748 (1976).

    Article  CAS  Google Scholar 

  7. Reible, S. A. Acoustoelectric convolver technology for spread-spectrum communications. IEEE Trans. Microw. Theory Techn. 29, 463–474 (1981).

    Article  Google Scholar 

  8. Hackett, L. et al. Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions. Nat. Commun. 12, 2769 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bogdanov, S., Shalaginov, M., Boltasseva, A. & Shalaev, V. M. Material platforms for integrated quantum photonics. Opt. Mater. Express 7, 111–132 (2017).

    Article  CAS  Google Scholar 

  10. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article  CAS  Google Scholar 

  11. Politi, A., Matthews, J. C., Thompson, M. G. & O’Brien, J. L. Integrated quantum photonics. IEEE J. Sel. Topics Quantum Electron. 15, 1673–1684 (2009).

    Article  CAS  Google Scholar 

  12. MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Wollack, E. A. et al. Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature. Appl. Phys. Lett. 118, 123501 (2021).

    Article  CAS  Google Scholar 

  14. Guo, Y. & Wang, M. Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015).

    Article  Google Scholar 

  15. Joshi, A. & Majumdar, A. Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74, 31–39 (1993).

    Article  CAS  Google Scholar 

  16. Arora, V. K. & Naeem, A. Phonon-scattering-limited mobility in a quantum-well heterostructure. Phys. Rev. B 31, 3887 (1985).

    Article  CAS  Google Scholar 

  17. Hwang, E. & Sarma, S. D. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).

    Article  Google Scholar 

  18. Zhou, J.-J. & Bernardi, M. Ab initio electron mobility and polar phonon scattering in GaAs. Phys. Rev. B 94, 201201 (2016).

    Article  Google Scholar 

  19. Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).

    Article  Google Scholar 

  20. Abdelkefi, A., Nayfeh, A. H. & Hajj, M. R. Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67, 1221–1232 (2012).

    Article  Google Scholar 

  21. Mahboob, I., Wilmart, Q., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Wide-band idler generation in a GaAs electromechanical resonator. Phys. Rev. B 84, 113411 (2011).

    Article  Google Scholar 

  22. Luukkala, M. V. & Kino, G. Convolution and time inversion using parametric interactions of acoustic surface waves. Appl. Phys. Lett. 18, 393–394 (1971).

    Article  CAS  Google Scholar 

  23. Kurosu, M., Hatanaka, D., Onomitsu, K. & Yamaguchi, H. On-chip temporal focusing of elastic waves in a phononic crystal waveguide. Nat. Commun. 9, 1331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurosu, M., Hatanaka, D. & Yamaguchi, H. Mechanical Kerr nonlinearity of wave propagation in an on-chip nanoelectromechanical waveguide. Phys. Rev. Appl. 13, 014056 (2020).

    Article  CAS  Google Scholar 

  25. Maksymov, I. S., Huy Nguyen, B. Q., Pototsky, A. & Suslov, S. Acoustic, phononic, Brillouin light scattering and Faraday wave-based frequency combs: physical foundations and applications. Sensors 22, 3921 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mansoorzare, H. & Abdolvand, R. Acoustoelectric-driven frequency mixing in micromachined lithium niobate on silicon waveguides. In 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS) 1183–1185 (IEEE, 2023).

  27. Mayor, F. M. et al. Gigahertz phononic integrated circuits on thin-film lithium niobate on sapphire. Phys. Rev. Appl. 15, 014039 (2021).

    Article  CAS  Google Scholar 

  28. Coldren, L. A. & Kino, G. Monolithic acoustic surface‐wave amplifier. Appl. Phys. Lett. 18, 317–319 (1971).

    Article  CAS  Google Scholar 

  29. Hackett, L. et al. Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nat. Electron. 6, 76–85 (2023).

  30. Mansoorzare, H. & Abdolvand, R. Micromachined heterostructured Lamb mode waveguides for acoustoelectric signal processing. IEEE Trans. Microw. Theory Techn. 70, 5195–5204 (2022).

    Article  Google Scholar 

  31. Eichenfield, M. & Olsson, R. Design, fabrication, and measurement of RF IDTs for efficient coupling to wavelength-scale structures in thin piezoelectric films. In 2013 IEEE International Ultrasonics Symposium (IUS) 753–756 (IEEE, 2013).

  32. Kumar, P. Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim, M.-S. et al. Sheet resistance analysis of interface-engineered multilayer graphene: mobility versus sheet carrier concentration. ACS Appl. Mater. Interfaces 12, 30932–30940 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Laroche, D., Das Sarma, S., Gervais, G., Lilly, M. & Reno, J. Scattering mechanism in modulation-doped shallow two-dimensional electron gases. Appl. Phys. Lett. 96, 162112 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on research sponsored in part by the Defense Advanced Research Projects Agency (DARPA) through a Young Faculty Award (YFA) under grant D23AP00174-00. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, by DARPA, the Department of the Interior, or the US Government. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility, operated for the US Department of Energy Office of Science. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

L.H. and M.E. came up with the device concepts and experimental implementations. M.E. developed the LDV system. M.K. performed the measurements with the LDV system with input from L.H., N.O. and M.E.. L.H., B.S., M.M., S.W., S.A., T.A.F. and M.E. designed the devices and fabrication process flow. M.M., S.W., B.S. and S.A. fabricated the devices. L.H., M.K., B.S. and S.S. performed the measurements. L.H. and M.E. carried out all of the modelling. L.H., M.K. and M.E. analysed all data with input from N.O. The manuscript was written by L.H., M.K. and M.E. and all authors have given approval for the final version.

Corresponding author

Correspondence to Matt Eichenfield.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Linbo Shao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackett, L., Koppa, M., Smith, B. et al. Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01882-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing