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POH1 deubiquitylates and stabilizes E2F1 to
promote tumour formation
Boshi Wang1, Aihui Ma1, Li Zhang1, Wei-Lin Jin2, Yu Qian1, Guiqin Xu1, Bijun Qiu3, Zhaojuan Yang1,

Yun Liu1, Qiang Xia3 & Yongzhong Liu1

Hyperactivation of the transcriptional factor E2F1 occurs frequently in human cancers and

contributes to malignant progression. E2F1 activity is regulated by proteolysis mediated

by the ubiquitin–proteasome system. However, the deubiquitylase that controls E2F1

ubiquitylation and stability remains undefined. Here we demonstrate that the deubiquitylase

POH1 stabilizes E2F1 protein through binding to and deubiquitylating E2F1. Conditional

knockout of Poh1 alleles results in reduced E2F1 expression in primary mouse liver cells. The

POH1-mediated regulation of E2F1 expression strengthens E2F1-downstream prosurvival

signals, including upregulation of Survivin and FOXM1 protein levels, and efficiently facilitates

tumour growth of liver cancer cells in nude mice. Importantly, human hepatocellular

carcinomas (HCCs) recapitulate POH1 regulation of E2F1 expression, as nuclear abundance of

POH1 is increased in HCCs and correlates with E2F1 overexpression and tumour growth.

Thus, our study suggests that the hyperactivated POH1–E2F1 regulation may contribute to the

development of liver cancer.
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T
he E2F transcription factor 1 (E2F1) is a master
transcription factor that participates in numerous
important biological processes1. Besides the clinical

evidence that aberrant upregulation of E2F1 frequently occurs
in various types of human cancer and correlates with malignant
progression and poor survival prognosis2–4, the E2F1-driven
onocgenic activity has been reinforced in different models based
on E2F1 transgenic or knockout mice5–8. Although the
observations showing that E2F1 is involved in cellular
senescence and apoptotic response may suggest its dual role in
tumorigenesis9, several events contributing to tumorigenesis may
counterbalance the tumour suppressive effects of E2F1. For
instance, cells with the deficiencies in p53 or p14(ARF) can escape
from E2F1-mediated apoptosis or prosenescent effects6,10, and
the protumorigenic signals generated by epidermal growth factor
receptor and phosphatidylinositol 3-kinase (PI3K)/Akt are
capable of inhibiting E2F1 apoptotic function11,12. In addition,
E2F1 itself has been shown to promote tumour cell survival and
EMT as well as angiogenesis in certain circumstances13–16.
Therefore, the oncogenic activity of E2F1 is determined by the
strength of prosurvival factors either downstream of this
transcriptional factor or provided by other signals.

E2F1 turnover is controlled by the ubiquitin–proteasome
system17–21. Several factors responsible for the ubiquitination of
E2F1 have been identified, including SKP2, APC/C and the
ROC–cullin complex17–19,21. MDM2, which negatively regulates
p53, directly interacts with and increases the half-life of E2F1 protein
by displacing SCF20. Deubiquitination is considered a key process in
the maintenance of proper cellular function and homeostasis.
Numerous studies have established that the dysfunction of
deubiquitinating enzymes is critical for tumour development,
progression or chemosensitivity22–26. However, the contribution of
deubiquitinating enzymes to the stabilization of E2F1 and its
biological significance in carcinogenesis has not been determined.

POH1/rpn11/PSMD14 is a deubiquitinating enzyme within the
19S particle lid that regulates proteasomal activities27,28. POH1
plays a ‘proof-reading’ role in controlling the fate of incoming
substrates27–29. In mammalian cells, POH1 functions in various
biological processes, including double-strand DNA break
responses30, embryonic stem cell differentiation31, aggresome
disassembly and clearance32, cellular viability33,34, multidrug
resistance35 and protein stability36–38. However, whether POH1
deregulation occurs in and contributes to the development of liver
cancer has not been determined.

In this study, we identify POH1 as the deubiquitinating
enzyme that stabilizes E2F1 and demonstrate that aberrant
hyperactivity of POH1–E2F1 regulation promotes liver tumour

formation. Our study therefore describes a previously unknown
mechanism by which E2F1 expression is regulated as well as its
implication in tumorigenesis.

Results
Identification of POH1 as a positive regulator of E2F1. To
identify deubiquitinating enzymes (DUBs) with the capacity of
regulating E2F1 expression, we initially screened 37 DUBs,
expression of which are relatively high in human liver tissues
based on in sillico EST profile analysis. For each DUB tested we
employed a pool of three non-overlapping siRNA oligos for
transfection experiments. The results of the relative quantification
of E2F1 protein levels, as assembled in rank order, showed that
knockdown of POH1 markedly repressed E2F1 expression
(Fig. 1a). Representative images of the immunoblots are shown in
Supplementary Fig. 1a. The mRNA levels of POH1 were
increased in a number of hepatocellular carcinomas (HCCs)
compared with that in the adjacent non-tumour specimens
(Supplementary Fig. 1b), suggesting a potential clinical relevance
for POH1 in the development of HCC.

We further validated the downregulation of E2F1 expression by
POH1 knowdown in different liver cancer cell lines (Fig. 1b;
Supplementary Fig. 1c). The decrease in E2F1 protein was not
associated with changes in the E2F1 mRNA levels in SMMC-7721
and PLC/PRF/5 cells (Supplementary Fig. 1d), indicating that a
post-transcriptional mechanism is involved in POH1-mediated
regulation of E2F1. Furthermore, in p53� /� mouse liver
progenitor cells transformed with myristoylated AKT (LPC-
Akt) or c-Myc (LPC-c-Myc), and the control cells (LPC-Mig)39,
POH1 depletion markedly inhibited E2F1 expression (Fig. 1c;
Supplementary Fig. 1e). The effects of POH1 on E2F1 expression
might also apply to other types of cancer cells such as the colon
cancer LoVo cells (Supplementary Fig. 1f). Remarkably, the
expression levels of E2F2 and E2F3, two E2F1 relatives9, were not
significantly reduced (Supplementary Fig. 1g), indicating that
POH1-mediated regulation of E2F1 may be a selective event.

We examined the effect of gain of POH1 function on E2F1
activity in tumour cells. PLC/PRF/5, SMMC-7721 and SK-Hep1
cells stably expressing exogenous Flag-tagged POH1 had higher
levels of E2F1 than did the control cells (Fig. 1d; Supplementary
Fig. 1h). POH1 overexpression positively regulated E2F1 activity,
as monitored by an E2F1-binding element-luciferase reporter,
whereas POH1 deletion yielded an opposite effect (Fig. 1e). More
importantly, we did not observe an appreciable change in
proteasomal activity within the cells overexpressing POH1, as
revealed by the levels of total ubiquitinated proteins

Figure 1 | POH1 is a positive regulator of E2F1 stability. (a) For each DUB protein indicated, a pool of three independent siRNAs was transfected into

PLC/PRF/5 cells. The protein levels of E2F1 were analysed by immunoblotting and normalized to that of the control GAPDH. The relative expression

compared with that of the siRNA control is presented in rank order. (b,c) Immunoblot analysis of POH1 and E2F1 in human liver tumour cells (b) and mouse

LPCs (c) transfected with the indicated siRNAs. Untransfected cells were shown as parental controls. (d) Immunoblot analysis of POH1 and E2F1 in human

liver tumour cells with or without POH1-Flag expression. (e) Luciferase assay in HEK293T cells co-transfected with the reporter plasmids combined with

the indicated siRNAs (left panel) or with POH1 and the vector control, respectively (right panel). Data are mean±s.d. (by t-test analysis, P values are

shown in the graph, n¼ 3). (f) SMMC-7721 cells transfected with control siRNA or POH1 siRNA were cultured for 72 h. Cell lysates were

immunoprecipitated with anti-E2F1 antibody, and the immunocomplexes were immunoblotted with antibodies against UB and E2F1. (g) Human liver tumour

cells transfected with POH1-Flag were immunoprecipitated with Flag-M2 agarose beads. The eluates were immunoblotted for the detection of E2F1.

(h) HEK293T cells were co-transfected with E2F1-His and POH1-Flag followed by immunoprecipitation using anti-His antibody or IgG. The

immunocomplexes were analysed by immunoblotting. (i) Endogenous E2F1 proteins were immunoprecipitated with anti-E2F1 antibody or IgG, and then

analysed by immunoblotting. (j) PLC/PRF/5 cells with or without stable expression of POH1-Flag were treated with CHX (100mgml� 1) for the indicated

time points. The cell lysates were examined by immunoblotting (left panel). A plot of normalized amount of E2F1 protein is shown (right panel). (k) SMMC-

7721 cells were transfected with either control siRNA or POH1 siRNA for 48 h, followed by CHX(100mgml� 1) treatment for the indicated times. The cell

extracts were analysed by immunoblotting (left panel). A plot of normalized amount of E2F1 protein is shown (right panel). Data in panels (j,k) are

mean±s.d. (by ANOVA analysis, P values are shown in the graphs, n¼ 3).
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(Supplementary Fig. 1i). These results indicate that POH1-
mediated upregulation of E2F1 is not paralleled by a change in
the global activity of the proteasome.

POH1 stabilizes E2F1. To investigate whether POH1 regulates
E2F1 ubiquitination, we first examined the levels of
polyubiquitin-modified E2F1 in tumour cell lines with or without
POH1 knockdown. POH1 knockdown significantly enhanced the

levels of E2F1 ubiquitination (Fig. 1f). This finding led us to
hypothesize that POH1 may interact with and deubiquitinate
E2F1. We therefore performed immunoprecipitation analyses,
and the results revealed that E2F1 was co-immunoprecipitated
with POH1 protein in cells transfected with Flag-tagged
POH1 (Fig. 1g). The interaction between POH1 and E2F1 was
verified by co-immunoprecipitation assays in HEK293T cells
(Fig. 1h). Furthermore, the interaction between endogenous
POH1 and E2F1 was demonstrated by co-immunoprecipitation
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(Fig. 1i). We then generated a set of truncated mutants of POH1
and E2F1 to delineate the regions within these proteins essential
for their interaction. Depletion of the COON-terminal domain
(aa181–310) of POH1 significantly impaired the association
between E2F1 and POH1, whereas the portion of E2F1
(aa201–437) displayed strong capability to interact with
POH1 (supplementary Fig. 2a,b). The interaction between the
N-terminal fragment (aa1–200) of E2F1 and POH1 was relatively
weak, but certainly reproducible. To test whether POH1 stabilizes
E2F1 protein, we examined the effect of both POH1 depletion
and overexpression on the stability of endogenous E2F1
protein in the presence of the inhibitor of protein translation,
cycloheximide (CHX). The results indicate that forced POH1
expression significantly potentiates E2F1 protein stability (Fig. 1j).
In contrast, E2F1 protein was degraded more rapidly in
POH1-knockdown cells compared with control cells (Fig. 1k).
These data collectively suggest that POH1 interacts with and
stabilizes E2F1 in tumour cells.

E2F1 downregulation in mouse liver cells deficient in Poh1. To
evaluate whether POH1-mediated regulation of E2F1 occurs in
primary mouse liver cells deficient in POH1, we generated

conditional Poh1f/f mice by targeting Poh1 exon 6 (Fig. 2a), the
deletion of which led to loss of POH1 expression in the presence
of Cre recombinase. The inducible Poh1 knockout mice
(Mx-Creþ , Poh1f/f), generated by crossing Poh1f/f mice with
Mx-Cre mice, were treated with three rounds of poly-
inosinic:polycytidylic acid (polyI:C) injection. Disruption of the
floxed Poh1 allele was then achieved in liver tissues and
accompanied by a substantial reduction of E2F1 expression
(Fig. 2b,c). Immunochemistry staining verified the reduction in
both POH1 and E2F1 expression in mouse hepatocytes (Fig. 2d).
Consistent with results obtained in cultured cells, the levels of
ubiquitin-modified E2F1 were substantially increased in the liver
tissues of mice with poh1 ablation (Fig. 2e). Accordingly, deple-
tion of Poh1 in poh1f/f MEFs could cause an acceleration of E2F1
protein turnover that apparently was not due to the change in
E2F1 mRNA levels (Supplementary Fig. 3a–c).

POH1 regulates E2F1 polyubiquitination. We next determined
which types of polyubiquitin modifications on E2F1 protein were
affected by POH1-mediated deubiquitnation. E2F1 proteins in
the lysates of cells transfected with E2F1-His, POH1-Flag, and
each one of the different ubiquitins (WT, K11-, K48-, or K63-only
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ubiquitin-HA), separately, were purified and subjected to
immunoblotting analysis using an anti-HA antibody. POH1
overexpression substantially reduced K11- and K63-linked ubi-
quitination on E2F1 (Fig. 3a). Similar results were obtained in the
experiments using the antibodies recognizing K48 or K63-linked
polyubiquitin chains (Supplementary Fig. 4a,b). The cleavage of
K63-linked polyubiquitin chains on E2F1 by POH1 is consistent
with the function of POH1 described as a K63-specific deubi-
quitinase in previous structural and biochemical studies40,41. Of
note, K11-linked ubiquitination is related to E2F1 degradation by
the proteasomal19. Overexpression of the K63-resistant form of
ubiquitin (K63R) attenuated POH1 knockdown-induced E2F1
downregulation, indicating that K63-linked polyubiquitination is
important for POH1-mediated E2F1 turnover (Fig. 3b). Although
POH1 overexpression caused the deubiqutination of E2F1, the
approach did not have an appreciable impact on levels of total
polyubiquitin-modified proteins (Supplementary Fig. 5a),
suggesting that POH1-mediated deubiquitination of E2F1 can
take place in cells in absence of a noticeable alteration in global
proteasome activity. In addition, in MG132-treated cells, wherein
the global proteasomal activity was inhibited, ectopic POH1
expression was able to deubiquitinate E2F1 (Supplementary
Fig. 5b), suggesting that this effect is independent of the overall
proteasome function.

Previous structural and functional studies indicate that the
JAMM domain of POH1 and the C120 and H113 sites are
important for the deubiquitinating enzymic activity of POH1
(Fig. 3c)36,37,42,43. Accordingly, ectopic expression of the POH1
mutants C120S or H113Q failed to deubiquitinate of E2F1
proteins (Fig. 3d). Of note, the POH1 mutant with deletion of
JAMM motif (deletion of 113–126aa) was capable of binding to
E2F1 (Supplementary Fig. 2a). Our in vitro analysis using 293T
cell-derived recombinant POH1 further confirmed the capability
of POH1 for cleaving K63-linked polyubiquitin chains from E2F1
and the importance of the functional domain and sites (Fig. 3e).
Unexpectedly, E.coli-expressed POH1 did not display a
deubiquitining activity on E2F1; that was consistent with the
previous studies28,36, suggesting that the defect might be due to
either inappropriate folding of prokaryotic recombinant POH1 or
absence of POH1-partner proteins in reaction. Furthermore, we
generated different siRNA-resistant (siR-R) POH1 constructs for
rescue assays, and the results showed that restoration of POH1
expression with the C120S-, H113Q- and DJAMM-POH1
mutants did not attenuate the inhibition of E2F1 caused by the
deletion of endogenous POH1 (Fig. 3f). Altogether, we have
demonstrated that the deubiquitinating activity that POH1
possesses is fundamental for POH1 regulation of E2F1.

It should be noted that POH1 may function separately in
regulating E2F1 abundance and proteasomal activities. C120S-
POH1 was enzymatically dead and not effective in deubiquitinat-
ing E2F1 (Fig. 3d,e). As expected, ectopic expression of the
siRNA-resistant C120S-POH1 did not restore E2F1 expression in
cells where the endogenous POH1 was downregulated by siRNA
(Fig. 3g left). However, C120S-POH1 expression is sufficient in
maintaining the global proteasomal activities, as revealed by the
abundance of ubiquitin-modified proteins (Fig. 3g right). These
results are consistent with the findings that the C120 mutation
has a deleterious effect on POH1 deubiquitinating activities
but does not abolish its proteasome activator function31,44.
Altogether, these results indicate that POH1-mediated
deubiquitination of E2F1 may be independent of the canonical
function of POH1 in the proteasome.

POH1 has protumorigenic activities. We next investigated the
effects of POH1 inhibition on the malignant growth potential of

liver cancer cells. POH1 inhibition by siRNAs markedly sup-
pressed the colony-forming ability of three human liver cancer
cell lines and the oncogenes-transformed mouse LPCs and the
control cells (Fig. 4a,b; Supplementary Fig. 6a). Consistently,
MTT assays also revealed reduced viability of human liver cancer
cells with POH1 knockdown (Supplementary Fig. 6b). In addi-
tion, POH1 knockdown resulted in increased percentage of
apoptotic cells (Supplementary Fig. 6c–e) and cell cycle arrest
(Supplementary Fig. 6f). Conversely, ectopic POH1 expression
substantially potentiated tumour cell survival in detached culture
conditions (Fig. 4c). Ectopic expression of C120S-POH1, the
enzyme-dead mutant with the capacity of maintaining overall
proteasomal activity, did not rescue the suppression of cell pro-
liferation caused by endogenous POH1 deletion (Supplementary
Fig. 6g,h).

To address the importance of POH1 in regulating the growth
of liver cancer cells, we generated the SK-Hep1 cells with a Tet-
On inducible shRNA cassette against POH1 (sh-POH1-Tet-on;
Supplementary Fig. 6i).Compared with the control groups, mice
with induced sh-POH1 expression in tumour cells
displayed a significant inhibition of tumour growth (Po0.001,
by analysis of variance (ANOVA) analysis) (Fig. 4d–f).
Immunohistochemical (IHC) staining revealed reduced E2F1 and
Ki67 expression in the xenograft tumours generated from POH1-
knockdown cells (Supplementary Fig. 7). On the contrary, POH1
but not the JAMM-deleted POH1 overexpression in the PLC/
PRF/5 liver cancer cells significantly increased the tumours’
volumes (Fig. 4g,h). Furthermore, E2F1 knockdown with stable
shRNA expression was able to counteract the protumorigenic
activities of POH1 (Fig. 4g,h). These results underscore
an essential role of E2F1 in POH1-mediated protumorigenic
activities.

POH1 activates Survivin and FOXM1 expression through E2F1.
To delineate the roles of POH1 in regulating tumour cell survival
and proliferation, we examined genome-wide transcription pro-
files of HCC SMMC-7721 cells with or without POH1 knockdown
by mRNA microarray. To identify the downstream effectors of the
POH1-E2F1 pathway, we focused on the expression alterations of
a set of known E2F1 target genes between the control and the
POH1-depleted cells (Supplementary Fig. 8 and Supplementary
Table 1). The results showed that the majority of E2F1 targets
examined were downregulated in the POH1-depleted cells,
including Survivin and FOXM1, both of which are critical for
tumorigenesis45–48. The downregulation of Survivin and FOXM1
in the cells with POH1 deletion was validated by real-time
RT–PCR (Fig. 5a). Accordingly, POH1 deletion substantially
inhibited the expression of Survivin and FOXM1 proteins
in human liver cancer cell lines (Fig. 5b; Supplementary
Fig. 9a). Conversely, the forced expression of exogenous POH1
significantly elevated Survivin and FOXM1 levels (Fig. 5c;
Supplementary Fig. 9b), whereas the overrexpression of an
enzymatic dead mutant of POH1 failed to up-regulate Survivin
and FOXM1 (Supplementary Fig. 10). Consistent with these
findings, E2F1 knockdown robustly inhibited Survivin and
FOXM1 expression and increased the frequency of apoptosis in
SMMC-7721 cells (Supplementary Fig. 11a,b). Furthermore, E2F1
inhibition by siRNAs almost entirely abolished POH1-mediated
upregulation of Survivin and FOXM1 in liver cancer cells
(Fig. 5d). The restoration of E2F1 or Survivin expression
in liver cancer cells substantially counteracted POH1 deletion-
induced cell growth inhibition and apoptotic response
(Fig. 5e–h; Supplementary Fig. 12). Altogether, these results
have demonstrated that E2F1 is responsible for POH1- mediated
activation of the protumorigenic factors.
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Nuclear POH1 is essential for liver tumour cell growth. Given
that POH1 may function in the nucleus30,37,49, we hypothesized
that the nuclear localization of POH1 is critical for regulating
E2F1 expression. We first isolated the nuclear and cytoplasmic
fractions of SK-Hep1 and SMMC-7721 cells and measured the

expression pattern of POH1. Indeed, both endogenous and
exogenous POH1 proteins were detected in the nuclear and
cytoplasmic compartments with antibodies against POH1 and
Flag-tag, respectively (Fig. 6a,b). We further substantiated the
observation by fluorescent immunostaining (Fig. 6c,d). In cells
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with POH1 knockdown, E2F1 expression in the nuclear fractions
was substantially decreased (Fig. 6e). E2F1 protein was mainly
localized in tumour cell nucleus and the co-immunoprecipitation
between POH1 and E2F1 was primarily observed in the purified
nuclear compartment of the cells (Supplementary Fig. 13). To
investigate the biological function of nuclear POH1, we
incorporated a nuclear export signal (NES) sequence into the
NH2 terminus of POH1-Flag. The POH1(NES) is prominently
located in the cytoplasmic compartment (Fig. 6f). We therefore
comparatively analysed the effectiveness of the siRNA-resistant
forms of POH1 and POH1(NES) on restoring the levels of E2F1,
Survivin and FOXM1 in cells with endogenous POH1
knockdown. In contrast with POH1 that entirely reinstated the
expression of these proteins, POH1(NES) did not compensate for
the loss of function of the endogenous POH1 (Fig. 6g). More
importantly, cytoplasm-restricted expression of POH1 did not
alleviate the inhibition of cell growth and the induction of cell
apoptosis caused by endogenous POH1 deletion (Fig. 6h and
Supplementary Fig. 14a,b). In addition, the POH1 mutant protein
(POH1(NL)-Flag) with a predominant distribution in cell nucleus
efficiently upregulated the expression of E2F1 protein (Fig. 6i).
Collectively, these data demonstrate that nuclear-localized POH1
is critical for E2F1 stabilization and the efficient growth of liver
tumour cells.

POH1 is upregulated in HCCs and correlates with E2F1 levels.
To further delineate whether POH1-mediated regulation of E2F1
expression is clinically relevant to human HCC development, we
characterized the expression patterns of POH1 and E2F1 and
assessed their association in human HCC samples. Western blot
analyses showed elevated POH1 and E2F1 expression in 10 HCCs
in comparison with their adjacent non-tumoral tissues (Fig. 7a).
To examine POH1 and E2F1 expression in a relatively large pool
of HCC samples, we employed tissue microarrays containing 154
matched HCCs and the adjacent non-malignant liver tissues for
IHC staining. Cytoplasmic immunoreactivity was observed in
both hepatocellular carcinoma cells and normal hepatocytes. In
total, 41.6% (64/154) of the non-tumour liver tissues exhibited
clear nuclear staining, whereas in the HCCs, 72.1% (111/154) of
the samples displayed nuclear staining (Fig. 7b, Supplementary
Fig. 15a). IHC staining for POH1 and E2F1 was scored according
to the intensity (ranging from 1 to 4) and the percentage of
positive cells. Given that nuclear POH1 mainly contributed to
E2F1 regulation, the staining location was also added to the
scores. The overall score was then determined by multiplying the
intensity score, the percentage score, and the location score
(Supplementary Fig. 15b). The increases in the expression of
POH1 and E2F1 in HCCs were statistically significant (Fig. 7c).
Moreover, we detected a significant correlation between POH1

staining scores and tumour stages of the samples examined with
Kruskal–Wallis test (P¼ 0.015). In addition, the multiple
hypothesis test (Holm–Sidak’s multiple comparisons test) was
performed and these results showed that the protein levels of
POH1 in stage T3/T4 tumours were significantly higher than
those in tumours at earlier stages (T1 versus T2, P¼ 0.845;
T1 versus T3–T4, P¼ 0.047; T2 versus T3–T4, P¼ 0.005)
(Fig. 7d). However, there was no correlation between POH1 levels
with tumour grades (Supplementary Fig. 16). Importantly, a
positive correlation was found between the staining scores of
POH1 and E2F1 (Po0.001, by Spearman correlation test;
Fig. 7e,f). Thus, these results reveal the clinical relevance of
POH1-mediated regulation of E2F1 in HCC development.

To further corroborate the findings aforementioned, we
analysed a publicly available transcriptome data set
(GSE14520), which was collected from 241 non-tumoral liver
tissues and 247 HCC samples. The transcript levels of POH1 and
its downstream genes Survivin and FOXM1 in the tumour tissues
were aberrantly upregulated in comparison with those in the non-
tumour samples (Fig. 8a). Moreover, the POH1 transcript
abundance was positively correlated with the expression of
Survivin and FOXM1 in the HCC samples (Survivin: Pearson
correlation R¼ 0.409, Po0.001; FOXM1: Pearson correlation
R¼ 0.346, Po0.001, Fig. 8b). To assess the correlation between
POH1 expression and E2F1 target gene signature, we performed
the gene set enrichment analysis (GSEA) of the dataset GSE14520
using a signature of E2F1-target genes from the Molecular
Signature Database (http://www.broadinstitute.org/gsea/msigdb/
cards/E2F1_UP.V1_UP.)50,51. The positive enrichment score
obtained from the analyses with the nominal P value¼ 0.0175,
false discovery rate Q value¼ 0.0175 and FWER P value¼ 0.009
(Fig. 8c), is indicative of a high enrichment in the expression of
E2F1 target gene signature in the tumour subset with high POH1
expression.

Discussion
Emerging evidence indicates that POH1 plays roles in several
biological processes, including DNA repair, cell differentiation
and transcriptional control. Our present study provides evidence
that POH1 deubiquitinates and stabilizes the master transcription
factor E2F1 and functions as a tumour-promoting protein in
HCCs. We demonstrated that POH1 efficiently deubiquitinates
E2F1 by removing the K-63 polyubiquitin chains, and this
observation is consistent with previous studies revealing that the
JAMM domain within POH1 is responsible for removing K63-
linked ubiquitin chains40,41,43. The deubiquitination of E2F1-K63
polyubiquitin chains appears to be important for POH1-mediated
stabilization of E2F1 because Ub-K63R overexpression showed a
dominant-negative effect that rescued E2F1 expression in cells

Figure 4 | POH1 inhibition suppresses tumour cell growth in vitro and in vivo. (a) Human liver tumour cells with or without transfection of control siRNA

or POH1 siRNA were examined by colony-formation assay. The representative results of three independent experiments are presented. (b) Mouse LPC-

Mig, LPC-Akt and LPC-c-Myc cells transfected with control siRNA or POH1 siRNA were cultured for the colony-formation assays. The representative

results of three independent experiments are presented. (c) PLC/PRF/5 cells with or without stable expression of POH1-Flag were cultured in attached or

detached conditions for 72 h. Cells were subjected to apoptosis analysis. Data shown are mean±s.d. (by t-test, P value is shown in the graph, n¼ 3).

(d) SK-Hep1 cells with an inducible Tet-On-sh-POH1 expression cassette (sh-POH1) and control cells (empty vector) were subcutaneously injected into the

right flanks of male BALB/c nude mice. The mice of each group were then randomly divided into two sub-groups and provided with normal drinking water

(n¼6) or with water containing 2mgml� 1 doxycycline (Tet-On) (n¼6). The graph indicates tumour growth in the mice at the end of the experiment.

Tumour volumes were measured at the indicated time intervals. Data shown are mean±s.e.m. P values calculated by ANOVA test are shown in the graph.

(e) The tumour weights were quantified. Data shown are mean ±s.e.m. P values calculated by t-test are shown in the graph. (f) A photograph of the

tumours in each group is presented. (g,h) Tumour formation in male BALB/c nude mice (n¼ 5 or 6) injected subcutaneously with PLC/PRF/5 cell lines as

indicated, the photograph of the tumours in each group is shown in (g); the tumour weight was quantified in (h). Data shown are mean ±s.e.m. P values

calculated by t-test are shown in the graphs.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9704

8 NATURE COMMUNICATIONS | 6:8704 | DOI: 10.1038/ncomms9704 |www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.broadinstitute.org/gsea/msigdb/cards/E2F1_UP.V1_UP
http://www.broadinstitute.org/gsea/msigdb/cards/E2F1_UP.V1_UP
http://www.nature.com/naturecommunications


with POH1 inhibition (Fig. 3b). Although protein modification
via K63-linked polyubiquitin chains is not generally considered
a degradation signal, previous studies have suggested that

K63-linked polyubiquitin chains serve as proteasome
recognition tags by which substrates are efficiently processed
in proteasome52,53. Of note, the proteasome indeed degrades
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Figure 5 | POH1 increases Survivin and FOXM1 expression by regulating E2F1. (a) Real-time RT–PCR analysis of the mRNA levels of Survivin and FOXM1

in cells transfected with control siRNA or POH1 siRNA. Data are mean±s.d. (by t-test analysis, P values are shown in the graph, n¼ 3) (b) Human liver

tumour cells untransfected (parental) or transfected with control siRNA or POH1 siRNA-1 and -2 were harvested at 72 h. The cell lysates were analysed

using the indicated antibodies. (c) PLC/PRF/5 and SMMC-7721 cells transduced with lentivirus containing POH1-Flag and the control were analysed by

immunoblotting using the indicated antibodies. (d) Cells overexpressing POH1-Flag or control cells were transfected with control siRNA or siRNA against

E2F1 for 48 h. Cell lysates were analysed by immunoblotting using the indicated antibodies. (e,f) PLC/PRF/5 cells overexpressing E2F1 were transfected

with control siRNA or POH1 siRNA, 72 h after transfection, cell lysates were analysed by immunoblotting (e); cells were cultured for 10 days then stained

with crystal violet. Representative data from the colony-formation assays are presented, n¼ 3 (f). (g,h) PLC/PRF/5 cells overexpressing Survivin were

transfected with control siRNA or POH1 siRNA, and cell lysates were analysed by immunoblotting (g); representative data from the colony-formation

assays are presented, n¼ 3 (h).
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K63-Ub chain-modified substrates54. The modification of
K11-linked polyubiquitination on E2F1 is substantially down-
regulated by POH1 (Fig. 3a). The K11-linked polyubiquitin

chains are involved in the proteasomal degradation of E2F1
protein19, raising the possibility that loss of the K11-linked
polyubiquitin modification may contribute to POH1-mediated
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stabilization of E2F1. In addition, the possibility cannot be
excluded that mutual regulation between K11- and K63-
modification on E2F1 may occur; if so, then the
deubiquitination of the K63-modification by POH1 may cause
a reduction in K11-linked polyubiquitination of E2F1 proteins.
Furthermore, the formation of mixed K11/K63 chains on E2F1

may also need to be taken into consideration. Of note, although
E2F1 deubiquitination by POH1 has been revealed to be
important for E2F1 stabilization, the molecular details of the
regulation remain to be defined. An approach using point
mutants of these proteins that specifically disrupt the E2F1/POH1
interaction may deepen our understanding of POH regulation of
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E2F1. Designing such mutants is currently difficult owing to lack
of structural insights into the interaction, but warrants our future
studies.

The 19S regulatory particle localized in the nucleus may display
non-proteolytic functions through directly binding the transcrip-
tional regulatory elements in various conditions55. In primary
liver tissues and cultured cell lines, we observed a considerable
amount of POH1 in the nucleus. The existence of nuclear POH1
is important for regulating E2F1 because cytoplasmic-localized
POH1 cannot stabilize E2F1 in cells with deletion of endogenous
POH1. We propose that the deubiquitination of E2F1 by POH1
primarily occurs in the nucleus; as a consequence, the prosurvival
genes, including Survivin and FOXM1, are transcriptionally
activated. A previous study indicated that POH1 overexpression
in HEK293 cells downregulates c-Jun ubiquitination, resulting in
c-Jun accumulation and upregulation of AP1-mediated gene
expression36. These observations suggest that transcriptional
regulation by the 19S proteasome is not simply due to direct
binding to and sequential activation of the targeted locus.Instead,
deubiquitinating enzymes of the 19S particle may provide an
important alternative by deubiquitinating the master
transcriptional factors. Therefore, these findings shed light on
the mechanism by which the 19S particle or its subunits play
transcriptional regulatory roles in the nucleus.

Most importantly, our study has revealed a coordinated
upregulation of POH1 and E2F1 expression in clinical HCC
samples, implying a pathological significance for POH1 regula-
tion of E2F1 in HCC development. E2F1 is thought to play dual
roles in tumorigenesis9, and E2F1 downstream targets consist of
both oncogenes and tumour suppressors. The paradoxical
function of E2F1 is cell context dependent and determined by
the output and nature of downstream targets, which are either
beneficial or deleterious to cell proliferation and survival12,56.
Some oncogenic factors activated by E2F1, including Akt,
mTORC1 and EGR1, can override the tumour-suppressive

networks downstream of E2F1, producing a growth advantage
to the tumour cells12,13,57. Consistently, we demonstrated that the
anti-apoptotic factors Survivin and FOXM1 are downstream of
the POH1-E2F1 axis. Importantly, these prosurvival factors are
involved in the development of various types of cancer, including
liver cancer47,48. The results based on data mining reveal that the
abundance of POH1 positively correlates with the expression of
Survivin and FOXM1 in HCC tissues and demonstrate the
activation of E2F1 target genes in the subset with high POH1
expression. In summary, we propose that the aberrant
upregulation of nuclear POH1-mediated E2F1 stabilization is
an important event in the development of liver cancer and that
targeting POH1 might serve as a promising strategy for cancer
treatment.

Methods
Cell lines and tissue specimens. PLC/PRF/5, SK-Hep1 and HEK293T cells were
acquired from the American Type Culture Collection (ATCC, Manassas VA, USA).
Authentication of these cell lines was performed using the GenePrint10 System
(Promega Biotech Co.) and via comparisons to the ATCC STR database. All the
STR profiles yielded 100% matches. The SMMC-7721 cell line was obtained from
the cell bank of the Institute of Biochemistry and Cell Biology of the Chinese
Academy of Sciences (Shanghai, China). Mouse LPC-Mig, LPC-Akt, and LPC-c-
Myc cells were generated in our laboratory39. Primary poh1w/w and poh1f/f MEFs
were obtained from embryos at embryonic day 13.5 from poh1w/w and poh1f/f mice.
The HEK293T cells and the packaging plasmids were used for lentivirus
production. Transduced cells were isolated by puromycin selection or FASC
sorting. Cell lines were maintained at 37 �C in 5% CO2 in DMEM supplemented
with 10% fetal bovine serum. Cell lines were tested routinely for mycoplasma
before use in an experiment. Human HCC samples and matched non-tumoral liver
tissues were obtained from the Renji Hospital, Shanghai Jiaotong University,
China. The use of human material was approved by the ethical review committee of
Renji Hospital and informed consent was obtained from these subjects. Three sets
of commercially available tissue microarrays (TMA) containing 154 HCC and non-
tumoral tissue pairs were used for IHC staining.

Reagents and primary antibodies. Doxycycline (DOX), CHX and puromycin
were from Sigma Aldrich. MG132 were from Millipore. Lipofectamine 2000 or
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Figure 8 | Correlation of POH1 expression with E2F1 target gene signature in HCC dataset. (a) Transcript levels of POH1, Survivin and FOXM1 in non-

tumoral liver and HCC tissues from the GSE14520 data set. The expression levels of these genes were compared using t-test. (b) The expression of POH1
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GSE14520 based on a signature of E2F1 target genes and POH1 expression.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9704

12 NATURE COMMUNICATIONS | 6:8704 | DOI: 10.1038/ncomms9704 |www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Lipofectamine 3000 Transfection Reagent was from Invitrogen. The following
antibodies used for western blotting: POH1 (Proteintech, 12059-1-AP, 1:1,000),
E2F3 (Proteintech, 12334-1-AP, 1:1,000), FOXM1 (Proteintech, 13147-1-AP,
1:500), E2F1(C-20) (Santa Cruz, sc-193, 1:500), E2F1(KH95) (Santa Cruz, sc-251,
1:500), E2F2 (Santa Cruz, sc-632, 1:500), GAPDH (Santa Cruz, sc-25778, 1:1,000),
b-actin (Santa Cruz, sc-47778, 1:1,000), a-Tubulin (Santa Cruz, sc-69969, 1:1,000),
Survivin (Cell Signaling Technology, 2808, 1:1,000), ubiquitin (abcam, EPR8589,
1:1,000), H2Ax (abcam, EPR895, 1:1000), HA-tag (Sigma Aldrich, H9658, 1:1,000),
Flag-tag (Sigma Aldrich, f1804, 1:1,000), His-tag (MBL, D291-3, 1:1,000),
6�His tag (HuaAn, M0812-3, 1:1,000), anti-Ubiquitin Antibody, Lys48-Specific
(Millipore, 05-1307, 1:500) and anti-Ubiquitin Antibody, Lys63-Specific (Millipore,
05–1313, 1:500). The following antibodies and reagents for immunoprecipitation
included 6�His tag (Cell Signaling Technology, 2366, 1:100), His tag (MBL,
PM032, 1:100), E2F1 (Santa Cruz;sc-193 or sc-251, 1:100), the Flag M2 Affinity Gel
(Sigma Aldrich, A2220). The antibodies for immunofluorescence were POH1
(Sigma Aldrich, HPA002114, 1:200) and Flag (Sigma Aldrich, f1804, 1:200).
The following antibodies were used for immunohistochemistry: POH1 (Sigma
Aldrich, HPA002114, 1:500), E2F1 (Santa Cruz, sc-251, 1:25), Ki67 (abcam,
EPR3611, 1:500). The adenovirus expressing Crerecombinase was purchased from
HANBIO. Inc.

Plasmids and siRNAs. Flag (3� Flag)-tagged POH1, POH1 mutants
(the DJAMM, C120S and H113Q mutant), POH1 with the depletion of carboxyl
terminal (181–310aa) and the NH2 terminal (1–180aa) mutant their siRNA-
resistant forms, as well as His-tagged E2F1 (full length and a set of truncated
mutants) and Survivin were cloned into pLVX (Clontech 632187). The Flag-tagged
POH1 (NES) and POH1(NL) were also cloned into pLVX vector. The NES was
incorporated at the NH2 terminus of POH1 and the nuclear localized signal (NLS)
was added at both the NH2 and carboxyl terminus of POH1, along with the
mutation of the putative NES (212–221aa) LEQKMLLNL within POH1 to
AEQKMAANA. A POH1 shRNA expression sequence was cloned into a Tet-On
expression vector ptripz (Open Biosystems) by the replacement of the original
expressing ORFs. A shE2F1 expression sequence was cloned into PPRIME plasmid.
For the luciferase reporter assay, the pGME2F-luc plasmid was purchased from
Genomeditech. The duplex siRNAs were chemically synthesized by Genepharma
(Shanghai, China), and the sequences of the siRNAs were as follows: POH1
si-1 (targeting human and mouse POH1, 50-GGTCTTAGGACATGAACCA-30),
POH1 si-2 (50-GTGATTGATGTGTTTGCTA-30), h-POH1 si-3 (targeting 30-UTR
in human POH1 mRNA, 50-CAGTCTCAGTTGTGCAATT-30) and h-E2F1 (si-1:
50-GTGATTTATTTATTGGGAA-30 ; si-2: 50-CACTGAATCTGACCACCAA-30).
The plasmids expressing HA-tagged wild-type ubiquitin (Addgene plasmid 17608),
K63-ubiquitin (Addgene plasmid 17606) and K48-ubiquitin (Addgene plasmid
17605) were kindly provided by Ted Dawson. The plasmid expressing HA-tagged
K11-ubiquitin (Addgene plasmid 22901) were kindly provided by Sandra Weller.
The plasmid expressing K63R-ubiquitin were kindly provided by Dr Xiaoren
Zhang (SIBS, CAS).

Co-immunoprecipitation. Cells were collected and lysed with an IP lysis buffer
(Beyotime Institute of Biotechnology, P0013). Total protein (up to 5mg) was
incubated with 50 ml of Protein G-agarose suspension (Millipore, 16–266,) for 3 h
at 4 �C on a rocking platform to reduce non-specific binding. After removing the
beads, the supernatant was supplemented with the primary antibodies followed by
incubation for an additional 3 h at 4 �C. A total of 100ml of Protein G-agarose
was then added to each immunoprecipitation mixture, and the incubation was
continued overnight at 4 �C on a rocking platform. The immunoprecipitates were
collected by centrifugation and washed three times with the cold 1�TBS. After the
loading buffer was added, the agarose was boiled and subjected to western blot
analysis. The EasyBlot anti-mouse (GTX221667-01) or EasyBlot anti-rabbit
(GTX221666-01) IgG HRP-conjugated secondary antibodies (Genetex) were
employed to avoid the denatured heavy and light chains from antibodies used in
immunoprecipitation assays.

The Flag M2 Affinity Gel (Sigma, A2220) was used to immunoprecipited the
Flag-tagged proteins, After three times’ washes with cold 1�TBS the immuno-
precipited protein complexes were eluted through 3� Flag peptides (Sigma, F4799).
The co-immunoprecipated proteins were detected through western blot assay.

Immunohistochemistry. In the immunocytochemical assay, the slides were
rehydrated and immersed in 3% hydrogen peroxide solution for 15min; pretreated
by microwave for 25min in 0.01mol l� 1 citrate buffer, pH 6.0, at 95 �C; and cooled
for 60min at room temperature. In between each incubation step, the sections were
washed with PBS, pH 7.4. The slides were blocked by 10% normal goat serum for
30min at 37 �C, washed, and then incubated overnight at 4 �C with diluted anti-
body against each protein studied. After washing with PBS, the slides were
visualized using GTVisionTMIII Detection System/Mo&Rb (GeneTech,
GK500710) following the manufacturer’s instructions. IHC staining for POH1 and
E2F1 was cored according to the intensity (1: low staining; 2: moderate staining;
3: high staining; 4: extremely high staining), the percentage of positive cells
(1: 0–25%; 2: 26–50%; 3: 51–75%; 4: 76–100%), and the location of staining
(1: no nuclear staining or the intensity of nuclear staining was weaker than that of

cytoplasm; 2: the intensity of nuclear staining was equal to that of cytoplasm; 3: the
intensity of nuclear staining was higher than that of cytoplasm). The overall
score¼ intensity score� percentage score� location score.

Xenograft model. The right flanks of male BALB/c nude mice (5 weeks of age)
were subcutaneously injected with SK-Hep1 cells (5� 106 in 0.2ml PBS) infected
with virus expressing either ptripz-sh-POH1or empty vector (n¼ 12 per group).
Each group of mice was then randomly divided into two groups (n¼ 6 per group).
One group was administered doxycycline (2mgml� 1) to induce to the POH1
shRNA expression and the other group was provided normal water. Tumour
growth was monitored every 5 days. The tumour-bearing mice were sacrificed 40
days after inoculation, and the tumours were removed for further study (photo-
graphing, weighing, fixing and paraffin-embedding). The left and right flanks of
male BALB/c nude mice (5 weeks of age) were subcutaneously injected with
PLC/PRF/5 cells (6� 106 in 0.2ml PBS). The tumour-bearing mice were killed
35 days after inoculation. All experiments were subject to approval by the Animal
Care and Use Committee of Shanghai Cancer Institute.

Quantitative real-time RT–PCR. Total cellular RNA from tissues and cells were
extracted by the RNAiso Plus kit (Takara Bio Inc.) and cDNA preparation was
preformed according to standard procedures using primeScript RT Master kit
(Takara Bio Inc.). Real-time RT–PCR was performed by SYBR gGreen quantitative
PCR kit (Takara Bio Inc.) using the 7300 Real-Time PCR System or ViiA7 System
(AB Applied Biosystems). The primers used in the mRNA levels detection were as
follows: human POH1-F: 50-TTGCTATGCCACAGTCAGGA-30 , human POH1-R:
50-AACAACCATCTCCGGCCTTC-30 ; human GAPDH-F: 50-CATGAGAAGT
ATGACAACAGCCT-30 , human GAPDH-R: 50-AGTCCTTCCACGATACCAA
AGT-30; human E2F1-F: 50-AGCGGCGCATCTATGACATC-30 , human
E2F1-R: 50-GTCAACCCCTCAAGCCGTC-30; human Survivin-F: 50-AGCCAGAT
GACGACCCCAT-30 , human Surviving-R: 50-TGGCTCTTTCTCTGTCCAGT-30 ;
human FOXM1-F: 50-ACGTCCCCAAGCCAGGCTC-30 , human FOXM1-R:
50-CTACTGTAGCTCAGGAATAA-30 . Mouse E2F1-F: 50-CAACTGCAGGAGA
GTGAGCA-30 , Mouse E2F1-R: 50-GTCCTGGCAGGTCACATAGG-30; Mouse
GAPDH-F: 50-AGGTCGGTGTGAACGGATTTG-30 , Mouse GAPDH-R: 50-TGTA
GACCATGTAGTTGAGGTCA-30.

Generation of Poh1 conditional knockout mice. Poh1 knockout mouse model
was created by Beijing Biocytogen. In brief, homology regions covering 8.0 kb
upstream of Poh1 exon 6 and 5.7 kb downstream of exon 6 were subcloned from a
BAC clone (RP23-1O11; Invitrogen) from C57BL/6J mouse genomic BAC library.
FRT-flanked Neo resistance-positive selection cassette was inserted downstream of
exon 6 and two loxP sites were introduced upstream of exon 6 and downstream of
exon 6, respectively. After linearization, the targeting vector was transfected into
C57BL/6J embryonic stem cells (Biocytogen) by electroporation. Seven positive
clones were identified by Southern blotting with 50-probe, 30-probe and Neo probe.
Two positive clones were injected into Balb/c blastocysts and implanted into
pseudopregnant females. Chimeric mice were crossed with C57BL/6J mice to
obtain F1 mice carrying the recombined allele containing the floxed Poh1 allele and
Neo selection cassette. These mice were mated with Flp recombinase expressing
C57BL/6J Flp mice to remove the Neo resistance cassette and generate a line of
Neo-excised floxed mice. Heterozygous Neo-excised, Poh1-floxed mice were then
crossed with C57BL/6J Mx-Cre mice to achieve the genomic deletion of Poh1 exon
6 from the floxed alleles. Pathogen-free mice were housed under specific pathogen-
free conditions and fed food and water regularly. All of the experiments involving
mice were performed according to the Institutional Animal Care and Use Com-
mittee of Shanghai and the National Research Council Guide for Care and Use of
Laboratory Animals. Genotyping was performed by PCR using the proper primers.
By crossing Mx-Cre mice with Poh1f/f mice and then backcrossing, we generated
interferon-inducible Poh1 knockout mice. Poh1f/f, Mx-Creþ mice (6–8 weeks old)
were injected with a total of three injections of 5 mg g� 1 body weight of polyI:C to
induce Poh1 deletion. The Poh1 WT, Mx-Creþ mice (6–8 weeks old) were
administered the same amount of polyI:C injections on the same dosing schedule;
these mice were used as controls. The primers used to detect the deleted poh1
include F: 50-TGTGATTGCTGTTTTATGAGGCA-30 and R: 50-GAGAATGAC
AACTATTGGGAGACTTAGC-30 .

Western blot. Cells or tissues were lysed with RIPA buffer (Thermo Fisher
Scientific, 89901) containing protease inhibitors cocktail (Roche Diagnostics,
05892970001) and phosphatase inhibitor cocktail (Roche Diagnostics,
04906845001). The lysates were clarified by centrifugation at 13,000 g for 30min at
4 �C. The total protein concentration was estimated using a BCA protein assay kit
(Thermo Fisher Scientific, 23225). Protein samples (50–150 mg) were loaded on to
and separated using SDS/PAGE, transferred on to NC membranes (Pall Cor-
poration) blocked and probed with the primary antibodies. After washing, the blots
were incubated with goat anti-rabbit (Santa Cruz, sc-2004) or goat anti-mouse
(Santa Cruz, sc-2005) HRP (horseradish peroxidase)-conjugated secondary anti-
bodies (Santa Cruz Biotechnology) and visualized using the SuperSignal West Dura
Extended Duration Substrate (Thermo Fisher Scientific, 34076). The uncropped
versions of western blots are shown in Supplementary Fig. 17.
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In vivo deubiquitination assay. HA-ubiquitinated 6�His- E2F1 or endogenous
E2F1 was immunoprecipited using the anti-6�His-tag antibodies (CST) or E2F1
antibodies (santa Cruz), respectively, in denaturing conditions. The E2F1-His
protein was purified and immunoblotted with antibodies against HA or ubiquitin.

In vitro deubiquitination assay. UB(K63)-HA conjugated E2F1-His was purified
from HEK293T cells with protein G-agarose (Millipore, 16–266) incubated with
anti-His antibody. The protein complexes containing Flag tagged wild-type POH1
or the C120S, H113Q mutant type of POH1 were purified from HEK293T cells
with anti-Flag M2 Affinity Gel (Sigma) followed by eluted through 3� Flag pep-
tides (Sigma). UB(K63)-HA-E2F1 and the POH1 protein complexes were incu-
bated for 1 h, at 37 �C in the reaction buffer (50mM Tris PH7.5, 10mM MgCl2,
1mM DTT, 100mM NaCl, 1mM ATP). After reaction, the E2F1-His protein was
purified and immunoblotted with antibodies against HA.

Immunofluorescence staining. Cells were seeded on coverslips and washed with
PBS buffer. Cells were fixed with 4% paraformaldehyde at room temperature for
15min and permeabilized with 0.1% Triton X-100 for 10min. After washing with
PBS buffer, cells were incubated with a blocking solution (5% goat serum) for
30min at room temperature and then incubated with primary antibodies overnight
at 4 �C. Cells were then washed three times and incubated with the anti-mouse or
anti-rabbit Alexa Fluor secondary antibodies (dilution 1:200, Invitrogen) for
30min at room temperature. DNA was counterstained using 4, 6 -diamidino-2-
phenylinodole (DAPI). The slides were observed under a ZEISS Axiovert 200
fluorescence optics microscope (Zeiss Shanghai, China).

Cell viability analysis. Cells with different treatments were seeded at 1,500 cells in
200ml DMEM per well in 96-well culture plates. At the indicated time points, 20 ml
of 0.5mgml� 1 MTT (Thiazolyl Blue Tetrazolium Bromide, M5655, Sigma) was
added to each well and incubated at 37 �C for 3 h. Then, the culture was replaced
with 150 ml dimethyl sulphoxide (D8418, Sigma) to stop the reaction. The absor-
bance values (OD 590 nm) were measured using a spectrophotometer (Thermo
Fisher Scientific).

Colony-formation assays. To assay the proliferation potential of cells, cells were
seeded at 2,000 cells in 2ml DMEM per well in the six-well culture plates. After
10 days’ culture, cells were fixed with methanol and stained with crystal violet
(Beyotime, C0121).

Apoptosis analysis. For apoptosis analysis, cells were placed in six-well plates
with the confluence of 50% 24 h before analysis, cells were harvested by trypsin
digestion, washed with binding buffer and stained with 5 ml annexin-V-PE (BD,
556422) or annexin-V-APC (ebioscience, BMS306APC-100) and 0.5 ml 7-AAD
(7-aminoactinomycin D, A9400, Sigma) in 100 ml binding buffer for 30min at
room temperature in the dark. Apoptotic cells were detected by flow cytometry
using a FACSCalibur flow cytometer (BD). For anoikis analysis, cells were cultured
in the 6-well plates with polystyrene-coated low attachment surface (3471, Corning
Incorporated) for 72 h, then cells were collected for annexin V/7-AAD double
staining.

Cell cycle analysis. Cells were placed in six-well plates with the confluence of 50%
24 h before analysis; cells were collected by trypsin digestion, and resuspended in
75% ethanol at 4 �C overnight. The cells were collected by centrifugation and
washed with 1� PBS. Finally, the cells were resuspended in 1�PBS containing
100 gml� 1 RNase A and 50 gml� 1 propidium iodide (PI). After incubation for
30min at 37 �C in dark, samples were subjected to flow cytometry for cell cycle
analysis.

Luciferase reporter assay. HEK293T cells were transiently transfected with
luciferase reporter plasmid (300 ng), POH1 expression plasmid (1 mg) or POH1
siRNA (100 nM). To correct the transfection efficiency variations in each group of
transfection, 20 ng of the Renilla luciferase plasmids were co-transfected in each
experiment. Forty-eight hours post-transfection, the firefly and Renilla luciferase
activities were monitored using the Dual-Luciferase Reporter Assay System (Pro-
mega). The data are shown as the ratio of firefly to Renilla luciferase activity.

Microarray analysis. Total RNA was extracted using TRIZOL Reagent
(Cat#15596-018, Life technologies) following the manufacturer’s instructions and
checked for a RINnumber to inspect RNA integrity by an Agilent Bioanalyzer 2100
(Agilent technologies). Qualified total RNA was further purified by RNeasy micro
kit (Cat#74004, QIAGEN, GmBH, Germany) and RNase-Free DNase Set
(Cat#79254, QIAGEN). Total RNA were amplified, labelled and purified by
using GeneChip 30-IVT ExpressKit (Cat#901229, Affymetrix) followed the
manufacturer’s instructions to obtain biotin labelled cRNA. Array hybridization
and wash was performed using GeneChip Hybridization, Wash and Stain Kit
(Cat#900720, Affymetrix) in Hybridization Oven 645 (Cat#00-0331-220V,

Affymetrix, Santa Clara, CA, USA) and Fluidics Station 450 (Cat#00-0079,
Affymetrix) followed the manufacturer’ s instructions. Slides were scanned by
GeneChip Scanner 3000 (Cat#00-00212, Affymetrix) and Command Console
Software 3.1 (Affymetrix) with default settings. Raw data were normalized by MAS
5.0 algorithm, GeneSpring Software 11.0 (Agilent technologies).The expression
data were deposited in Gene Expression Omnibus (GEO accession number
GSE65210).

Gene set enrichment analysis. GSEA was performed using the GSEA program
provided by the Broad Institute (http://www.broadinstitute.org/gsea/index.jsp).
GSEA was used for comparing the expression of a set of E2F1 target genes
(gene sets named E2F1_UP. V1 UP from Molecular Signature Database) between
POH1-High (expression4average) and POH1-Low (expressionoaverage)
tumours, and assesses the relative enrichment of E2F1 positive regulated genes
in these two groups.

Statistical analysis. The differences in the results between groups were compared
using t-test and ANOVA test. Analysis in tissue samples was performed using the
PASW 18.0 Statistical program (SPSS). Difference between the protein levels within
tumour and non-tumoral tissues were analysed using the Wilcoxon signed-rank
test. The correlation between protein expression levels was analysed using the
Spearman correlation test. Associations between protein expression and tumour
stages and grades were assessed by the Kruskal–Wallis test and Holm–Sidak’s
multiple comparisons test. All P values o0.05 were considered significant.
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