Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Decoding the interplay between genetic and non-genetic drivers of metastasis

Abstract

Metastasis is a multistep process by which cancer cells break away from their original location and spread to distant organs, and is responsible for the vast majority of cancer-related deaths. Preventing early metastatic dissemination would revolutionize the ability to fight cancer. Unfortunately, the relatively poor understanding of the molecular underpinnings of metastasis has hampered the development of effective anti-metastatic drugs. Although it is now accepted that disseminating tumour cells need to acquire multiple competencies to face the many obstacles they encounter before reaching their metastatic site(s), whether these competencies are acquired through an accumulation of metastasis-specific genetic alterations and/or non-genetic events is often debated. Here we review a growing body of literature highlighting the importance of both genetic and non-genetic reprogramming events during the metastatic cascade, and discuss how genetic and non-genetic processes act in concert to confer metastatic competencies. We also describe how recent technological advances, and in particular the advent of single-cell multi-omics and barcoding approaches, will help to better elucidate the cross-talk between genetic and non-genetic mechanisms of metastasis and ultimately inform innovative paths for the early detection and interception of this lethal process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The three main phases of metastasis.
Fig. 2: The main biological processes that fuel dissemination.
Fig. 3: The MIC phenotype is dictated by the interplay between genotype and plasticity.
Fig. 4: Timing and occurrence of dissemination and dormancy.
Fig. 5: An integrated and dynamic view of the genetic and non-genetic mechanisms underpinning metastasis.

Similar content being viewed by others

References

  1. Gerstberger, S., Jiang, Q. & Ganesh, K. Metastasis. Cell 186, 1564–1579 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miroshnychenko, D. et al. Spontaneous cell fusions as a mechanism of parasexual recombination in tumour cell populations. Nat. Ecol. Evol. 5, 379–391 (2021).

    Article  PubMed  Google Scholar 

  3. Gast, C. E. et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci. Adv. 4, eaat7828 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Lu, X. & Kang, Y. Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proc. Natl Acad. Sci. USA 106, 9385–9390 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Black, J. R. M. & McGranahan, N. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer https://doi.org/10.1038/s41568-021-00336-2 (2021).

  6. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-1059 (2022).

  7. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. PCAWG Transcriptome Core Group et al. Genomic basis for RNA alterations in cancer. Nature 578, 129–136 (2020). This genomic–transcriptomic analysis highlights the range of genomically encoded transcriptomic alterations in cancer, and the impact of somatic copy-number alterations on gene expression.

    Article  ADS  Google Scholar 

  10. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  ADS  Google Scholar 

  11. Martínez-Ruiz, C. et al. Genomic-transcriptomic evolution in lung cancer and metastasis. Nature 616, 543–552 (2023). This paper explores links between genomic and transcriptomic alterations during lung cancer evolution, highlighting the influence of genomic alterations on global patterns of allele-specific gene expression and RNA editing, as well as their interplay during metastasis.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    Article  ADS  PubMed  Google Scholar 

  13. Bonnal, S. C., López-Oreja, I. & Valcárcel, J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-020-0350-x (2020).

  14. Anczuków, O. & Krainer, A. R. Splicing-factor alterations in cancers. RNA 22, 1285–1301 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 174, 1034–1035 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel, S. A. et al. The renal lineage factor PAX8 controls oncogenic signalling in kidney cancer. Nature 606, 999–1006 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Househam, J. et al. Phenotypic plasticity and genetic control in colorectal cancer evolution. Nature 611, 744–753 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gazzoli, I., Loda, M., Garber, J., Syngal, S. & Kolodner, R. D. A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res. 62, 3925–3928 (2002).

    CAS  PubMed  Google Scholar 

  19. Baylin, S. B. & Jones, P. A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. 8, a019505 (2016).

  20. Pan, H. et al. Discovery of candidate DNA methylation cancer driver genes. Cancer Discov. 11, 2266–2281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fennell, K. A. et al. Non-genetic determinants of malignant clonal fitness at single-cell resolution. Nature 601, 125–131 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Quinn, J. J. et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science 371, eabc1944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, eabc1944 (2022).

    Article  Google Scholar 

  24. Karras, P. et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature https://doi.org/10.1038/s41586-022-05242-7 (2022). This study provides evidence that tumour growth and metastatic dissemination in a preclinical mouse model of melanoma can be fuelled by transcriptionally and spatially distinct melanoma subpopulations.

  25. Schmitt, M. J. et al. Phenotypic mapping of pathologic cross-talk between glioblastoma and innate immune cells by synthetic genetic tracing. Cancer Discov. 11, 754–777 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Mehrabadi, F. R. et al. Profiles of expressed mutations in single cells reveal subclonal expansion patterns and therapeutic impact of intratumor heterogeneity. Preprint at bioRxiv https://doi.org/10.1101/2021.03.26.437185 (2021).

  27. Schiffman, J. S. et al. Defining ancestry, heritability and plasticity of cellular phenotypes in somatic evolution. Preprint at bioRxiv https://doi.org/10.1101/2022.12.28.522128 (2022). This preprint links phylogenetic ancestry with single cellular phenotypes and explores their relative heritability in somatic evolution.

  28. Brock, A., Chang, H. & Huang, S. Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet. 10, 336–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Quintanal-Villalonga, Á. et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 17, 360–371 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature 488, 527–530 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell https://doi.org/10.1016/j.ccr.2006.11.020 (2007).

  32. Oskarsson, T., Batlle, E. & Massagué, J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell https://doi.org/10.1016/j.stem.2014.02.002 (2014).

  33. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Turajlic, S. & Swanton, C. Metastasis as an evolutionary process. Science 352, 169–175 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Birkbak, N. J. & McGranahan, N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37, 8–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Tomczak, K., Czerwińska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19, A68–A77 (2015).

    Google Scholar 

  37. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Christensen, D. S. et al. Treatment represents a key driver of metastatic cancer evolution. Cancer Res. 82, 2918–2927 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martínez-Jiménez, F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 618, 333–341 (2023). This large, unpaired analysis of primary and metastatic tumours demonstrated that overall, primary and metastatic genomes tended to be relatively similar, without obvious ‘gatekeeper’ events that unlock metastatic potential.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 173, 1823 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baslan, T. et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature 608, 795–802 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lengel, H. B. et al. Genomic mapping of metastatic organotropism in lung adenocarcinoma. Cancer Cell 41, 970–985 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173, 581–594.e12 (2018). This systematic analysis of paired primary and metastatic clear-cell renal carcinoma biopsies reveals that genomic events (in particular, 9p loss) are highly selected in metastasis.

  47. Al Bakir, M. et al. The evolution of non-small cell lung cancer metastases in TRACERx. Nature 616, 534–542 (2023). This paired analysis of lung cancer primary and metastatic tumours revealed that metastatic competence is shaped by selection of genomic events occurring within the primary tumour.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, F. et al. Moving pan-cancer studies from basic research toward the clinic. Nat. Cancer 2, 879–890 (2021).

    Article  PubMed  Google Scholar 

  49. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Patton, E. E. et al. Melanoma models for the next generation of therapies. Cancer Cell https://doi.org/10.1016/j.ccell.2021.01.011 (2021).

  51. Hebert, J. D., Neal, J. W. & Winslow, M. M. Dissecting metastasis using preclinical models and methods. Nat. Rev. Cancer 23, 391–407 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Vander Velde, R., Shaffer, S. & Marusyk, A. Integrating mutational and nonmutational mechanisms of acquired therapy resistance within the Darwinian paradigm. Trends Cancer 8, 456–466 (2022).

    Article  Google Scholar 

  53. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Bejarano, L., Jordāo, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, Y. et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12, 134–153 (2022).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  56. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

  57. Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer https://doi.org/10.1038/nrc3597 (2013).

  58. Dick, J. E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell https://doi.org/10.1016/j.cell.2009.08.017 (2009).

  60. Clevers, H. The cancer stem cell: Premises, promises and challenges. Nat. Med. 17, 313–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Lawson, D. A. et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526, 131–135 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gkountela, S. et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176, 98–112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Melo, F. D. S. E. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature https://doi.org/10.1038/nature21713 (2017).

  64. Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028 (2012).

  65. De Sousa E Melo, F. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017). This study demonstrated that ablation of LGR5+ CSCs does not prevent long-term tumour growth, as this compartment can be replenished by de-differentiation of LGR5 progenitors, but it does decrease metastasis incidence, which indicates that dissemination and/or colonization of distant sites may originate from LGR5+ CSCs.

  66. Fumagalli, A. et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 26, 569–578 (2020). This article provides experimental evidence that CRC metastases are seeded by LGR5 cells, which have an intrinsic ability to become CSCs in a niche-independent manner and can restore epithelial hierarchies in metastatic tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nowosad, A., Marine, J.-C. & Karras, P. Perivascular niches: critical hubs in cancer evolution. Trends Cancer 9, 897–910 (2023).

    Article  PubMed  Google Scholar 

  68. Lambert, A. W. & Weinberg, R. A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 21, 325–338 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Shen, Y. et al. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell 37, 800–817 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Wei, S. C. et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678–688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vaupel, P. & Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26, 225–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. Science https://doi.org/10.1126/science.1234850 (2013).

  73. Nieto, M. A., Huang, R. Y. Y. J., Jackson, R. A. A. & Thiery, J. P. P. EMT: 2016. Cell https://doi.org/10.1016/j.cell.2016.06.028 (2016).

  74. Thiery, J. P., Acloque, H., Huang, R. Y. J. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

  75. Yang, M.-H. et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat. Cell Biol. 10, 295–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Ye, X. & Weinberg, R. A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).

  77. Ocaña, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

    Article  PubMed  Google Scholar 

  78. Revenco, T. et al. Context dependency of epithelial-to-mesenchymal transition for metastasis. Cell Rep. 29, 1458–1468 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Beerling, E. et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. https://doi.org/10.1016/j.celrep.2016.02.034 (2016).

  80. Pastushenko, I. et al. Identification of the tumour transition states occurring during EMT. Nature 556, 463–468 (2018). This study provides evidence that spontaneous EMT proceeds through intermediate transition states with different metastatic propensities, rather than through an on-and-off switch.

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Padmanaban, V. et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573, 439–444 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Graziani, V., Rodriguez-Hernandez, I., Maiques, O. & Sanz-Moreno, V. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2021.10.004 (2022).

  85. Lüönd, F. et al. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev. Cell 56, 3203–3221 (2021).

    Article  PubMed  Google Scholar 

  86. Simeonov, K. P. et al. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 39, 1150–1162 (2021). Using an elegant inducible CRISPR–Cas9-based lineage recorder with highly efficient single-cell capture of both transcriptional and phylogenetic information, this study demonstrates that the metastatic potential peaks in rare, late-hybrid EMT states, and goes on to show that the gene signatures of late-hybrid EMT states are predictive of reduced survival in both patients with pancreatic cancer and patients with lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pastushenko, I. & Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212–226 (2019).

  88. Ligorio, M. et al. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell 178, 160–175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cui, J. et al. MLL3 loss drives metastasis by promoting a hybrid epithelial–mesenchymal transition state. Nat. Cell Biol. https://doi.org/10.1038/s41556-022-01045-0 (2023).

  90. Campbell, N. R. et al. Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. Dev. Cell 56, 2808–2825 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pastushenko, I. et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 589, 448–455 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Malagoli Tagliazucchi, G., Wiecek, A. J., Withnell, E. & Secrier, M. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat. Commun. 14, 789 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sullivan, J. P. et al. Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov. 4, 1299–1309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stott, S. L. et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci. Transl. Med. 2, 25ra23 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. USA 113, E854–E863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer https://doi.org/10.1038/nrc3080 (2011).

  98. Huang, Q. et al. Shear stress activates ATOH8 via autocrine VEGF promoting glycolysis dependent-survival of colorectal cancer cells in the circulation. J. Exp. Clin. Cancer Res. 39, 25 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, X. et al. Fluid shear stress promotes autophagy in hepatocellular carcinoma cells. Int. J. Biol. Sci. 14, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wrenn, E. D. et al. Regulation of collective metastasis by nanolumenal signaling. Cell 183, 395–410 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xia, F. et al. Genome-wide in vivo screen of circulating tumor cells identifies SLIT2 as a regulator of metastasis. Sci. Adv. 8, eabo7792 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rahrmann, E. P. et al. The NALCN channel regulates metastasis and nonmalignant cell dissemination. Nat. Genet. https://doi.org/10.1038/s41588-022-01182-0 (2022).

  105. Rhim, A. D. et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146, 647–651 (2014).

    Article  PubMed  Google Scholar 

  106. Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 588–592 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Podsypanina, K. et al. Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321, 1841–1844 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Massagué, J. & Ganesh, K. Metastasis-initiating cells and ecosystems. Cancer Discov. 11, 971–994 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. El-Kebir, M., Satas, G. & Raphael, B. J. Inferring parsimonious migration histories for metastatic cancers. Nat. Genet. 50, 718–726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Reiter, J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx Renal. Cell 173, 595–610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Noorani, A. et al. Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma. Nat. Genet. 52, 74–83 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sanborn, J. Z. et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc. Natl Acad. Sci. USA 112, 10995–11000 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maddipati, R. & Stanger, B. Z. Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov. 5, 1086–1097 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer https://doi.org/10.1038/s43018-020-0088-5 (2020).

  118. Gao, H. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gao, H. et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell 166, 47–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cock, J. M. D. et al. Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-16-0608 (2016).

  121. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Correia, A. L. et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature 594, 566–571 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Fane, M. E. et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature 606, 396–405 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Frankell, A. M. et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 616, 525–533 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Duda, D. G. et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl Acad. Sci. USA 107, 21677–21682 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer https://doi.org/10.1038/nrc.2017.6 (2017).

  128. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer https://doi.org/10.1038/nrc2621 (2009).

  130. Tominaga, N. et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat. Commun. 6, 6716 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Zhou, W. et al. Cancer-Secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501–515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Parida, P. K. et al. Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness. Cell Metab. 34, 90–105 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee, J. W. et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567, 249–252 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. García-Silva, S. et al. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nat. Cancer 2, 1387–1405 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Morrissey, S. M. et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 33, 2040–2058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Sevenich, L. et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol. 16, 876–888 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rodrigues, G. et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 21, 1403–1412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Łuksza, M. et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature 606, 389–395 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  145. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  146. Huergo-Zapico, L. et al. NK-cell editing mediates epithelial-to-mesenchymal transition via phenotypic and proteomic changes in melanoma cell lines. Cancer Res. 78, 3913–3925 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lo, H. C. et al. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat. Cancer 1, 709–722 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Reticker-Flynn, N. E. et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 185, 1924–1942 (2022). This study indicates that lymph node colonization induces tumour-specific immune tolerance and thereby facilitates further spreading of the disease to distant organs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer https://doi.org/10.1038/s41568-020-00320-2 (2021).

  151. Falletta, P. et al. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 31, 18–33 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. García-Jiménez, C. & Goding, C. R. Starvation and pseudo-starvation as drivers of cancer metastasis through translation reprogramming. Cell Metab. 29, 254–267 (2019).

  153. Andrzejewski, S. et al. PGC-1α promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab. 26, 778–787 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Lebleu, V. S. et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 992–1003 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Broadfield, L. A., Pane, A. A., Talebi, A., Swinnen, J. V. & Fendt, S. M. Lipid metabolism in cancer: new perspectives and emerging mechanisms. Dev. Cell https://doi.org/10.1016/j.devcel.2021.04.013 (2021).

  156. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  157. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rossi, M. et al. PHGDH heterogeneity potentiates cancer cell dissemination and metastasis. Nature 605, 747–753 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cheung, E. C. et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer. Cancer Cell 37, 168–182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Crist, S. B. et al. Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nat. Cell Biol. 24, 538–553 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  164. Fischer, G. M. et al. Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases. Cancer Discov. 9, 628–645 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Basnet, H. et al. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 8, e43627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Davis, R. T. et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat. Cell Biol. 22, 310–320 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  168. Delaunay, S. et al. Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature 607, 593–603 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  169. Altea-Manzano, P. et al. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. Nat. Cancer https://doi.org/10.1038/s43018-023-00513-2 (2023).

  170. Sivanand, S. et al. Cancer tissue of origin constrains the growth and metabolism of metastases. Preprint at bioRxiv https://doi.org/10.1101/2022.08.17.504141 (2022).

  171. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  172. Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Falletta, P., Goding, C. R. & Vivas-García, Y. Connecting metabolic rewiring with phenotype switching in melanoma. Front. Cell Dev. Biol. 10, 930250 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Loo, S. Y. et al. Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. Sci. Adv. 7, eabh2443 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  175. Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  177. Marine, J.-C., Dawson, S.-J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Diamantopoulou, Z. et al. The metastatic spread of breast cancer accelerates during sleep. Nature 607, 156–162 (2022). This study provides evidence that metastatic spreading in breast cancer follows circadian rhythmicity, with the highest levels observed during the rest phase.

    Article  ADS  CAS  PubMed  Google Scholar 

  179. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science https://doi.org/10.1126/science.abc4552 (2021).

  180. Dohlman, A. B. et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 185, 3807–3822 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Parhi, L. et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11, 3259 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bertocchi, A. et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 39, 708–724 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372 (2022). This study reveals that tumour-resident bacteria promote the release and survival of CTCs.

    Article  CAS  PubMed  Google Scholar 

  185. Galeano Niño, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature https://doi.org/10.1038/s41586-022-05435-0 (2022).

  186. Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Biswas, A. K. & Acharyya, S. Understanding cachexia in the context of metastatic progression. Nat. Rev. Cancer 20, 274–284 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Kay, J., Thadhani, E., Samson, L. & Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair 83, 102673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Beaver, J. A., Kluetz, P. G. & Pazdur, R. Metastasis-free survival—a new end point in prostate cancer trials. N. Engl. J. Med. 378, 2458–2460 (2018).

    Article  PubMed  Google Scholar 

  191. US National Library of Medicine. The PEACE (Posthumous Evaluation of Advanced Cancer Environment) Study. ClinicalTrials.gov clinicaltrials.gov/ct2/show/NCT03004755 (2023).

  192. Bailey, C. et al. Tracking cancer evolution through the disease course. Cancer Discov. 11, 916–932 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lengrand, J. et al. Pharmacological targeting of netrin-1 inhibits EMT in cancer. Nature 620, 402–408 (2023). This article describes a clinically compatible approach to target EMT cells and thereby inhibit early metastatic dissemination.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cassier, P. A. et al. Netrin-1 blockade inhibits tumour growth and EMT features in endometrial cancer. Nature 620, 409–416 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dhara, S. et al. Pancreatic cancer prognosis is predicted by an ATAC-array technology for assessing chromatin accessibility. Nat. Commun. 12, 3044 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  196. Denny, S. K. et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell 166, 328–342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhao, Y. et al. EZH 2 cooperates with gain‐of‐function p53 mutants to promote cancer growth and metastasis. EMBO J. 38, e99599 (2019).

  198. Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 4, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature https://doi.org/10.1038/s41586-022-05425-2 (2022).

  200. Biermann, J. et al. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell 185, 2591–2608 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Jee, J. et al. Overall survival with circulating tumor DNA-guided therapy in advanced non-small-cell lung cancer. Nat. Med. https://doi.org/10.1038/s41591-022-02047-z (2022).

  202. Nanou, A. et al. Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br. J. Cancer 122, 801–811 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  204. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  205. Albrecht, L. J. et al. Circulating cell-free messenger RNA enables non-invasive pan-tumour monitoring of melanoma therapy independent of the mutational genotype. Clin. Transl. Med. 12, e1090 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. & Benitah, S. A. The role of lipids in cancer progression and metastasis. Cell Metab. 34, 1675–1699 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Glinos, D. A. et al. Transcriptome variation in human tissues revealed by long-read sequencing. Nature 608, 353–359 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  208. Gong, J. et al. PancanQTL: systematic identification of cis-eQTLs and trans-eQTLs in 33 cancer types. Nucleic Acids Res. 46, D971–D976 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Oren, Y. et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 596, 576–582 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shaffer, S. M. et al. Memory sequencing reveals heritable single-cell gene expression programs associated with distinct cellular behaviors. Cell 182, 947–959 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Dawson and S. M. Fendt for reading and comments on the manuscript. P.K. received financial support from the Foundation against Cancer (Stichting tegen Kanker, 2021-028). The work from the Marine laboratory that is cited in this review was supported by the FWO (G0C530N and G070622N), Stichting Tegen Kanker (FAF-F/2018/1265), Melanoma Research Alliance (MRA, EIA 623591), KU Leuven (C1 grant) and the Belgian Excellence of Science (EOS) program.

Author information

Authors and Affiliations

Authors

Contributions

P.K. and J.-C.M. conceived the study and supervised its development. P.K., J.-C.M., J.R.M.B. and N.M. contributed to the writing of the paper, edited and provided feedback on all parts. P.K. and J.R.M.B. designed the figures.

Corresponding author

Correspondence to Jean-Christophe Marine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Nicola Aceto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karras, P., Black, J.R.M., McGranahan, N. et al. Decoding the interplay between genetic and non-genetic drivers of metastasis. Nature 629, 543–554 (2024). https://doi.org/10.1038/s41586-024-07302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07302-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer